Skip to content

Commit

Permalink
Renamed "permOverASM" to "PermSetOfASM"
Browse files Browse the repository at this point in the history
  • Loading branch information
patriciajklein committed Oct 31, 2023
1 parent 1687927 commit 14a8bfa
Show file tree
Hide file tree
Showing 4 changed files with 14 additions and 14 deletions.
2 changes: 1 addition & 1 deletion MatrixSchubert.m2
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,7 @@ export{
"entrywiseMinRankTable", --documented ++
"entrywiseMaxRankTable", --documented ++
"schubDecompose", --documented ++
"permOverASM", --documented ++
"permSetOfASM", --documented ++
"isIntersectionSchubIdeals", --documented ++
"isASMIdeal", --documented ++
"isASMUnion", --documented ++
Expand Down
6 changes: 3 additions & 3 deletions MatrixSchubert/MatrixSchubertConstructions.m2
Original file line number Diff line number Diff line change
Expand Up @@ -575,8 +575,8 @@ schubDecompose Matrix := List => A -> (
--TODO: input validation/type checking
--NOTE: This assumes that schubDecompose is allowed to take in something other than an ASM ideal. Adjust if schubDecompose is changed.
-------------------------------------------
permOverASM = method()
permOverASM Matrix := List => A -> (
permSetOfASM = method()
permSetOfASM Matrix := List => A -> (
if not(isPartialASM(A)) then error("The input must be a partial alternating sign matrix.");
I := antiDiagInit A;
schubDecompose I
Expand Down Expand Up @@ -643,7 +643,7 @@ isASMUnion List := Boolean => (L) -> (
rkTable := entrywiseMaxRankTable (L / permToMatrix);
if not isMinRankTable rkTable then return false; -- might be redundant, is the entrywise max rank table of a list of *permutations* always a min rank table?
A := rankTableToASM rkTable;
set L === set permOverASM A
set L === set permSetOfASM A
)

-------------------------------------------
Expand Down
12 changes: 6 additions & 6 deletions MatrixSchubert/MatrixSchubertConstructionsDOC.m2
Original file line number Diff line number Diff line change
Expand Up @@ -255,7 +255,7 @@ doc ///
TO (schubAdd, List),
TO (schubReg, Matrix),
TO (schubCodim, Matrix),
TO (permOverASM, Matrix),
TO (permSetOfASM, Matrix),
TO (toOneLineNotation, Matrix)
}@
///
Expand Down Expand Up @@ -919,12 +919,12 @@ doc ///

doc ///
Key
permOverASM
(permOverASM, Matrix)
permSetOfASM
(permSetOfASM, Matrix)
Headline
finds the permutation set of an alternating sign matrix
Usage
permOverASM A
permSetOfASM A
Inputs
A:Matrix
Outputs
Expand All @@ -934,7 +934,7 @@ doc ///
Given an alternating sign matrix $A$, this routine computes Perm$(A) = \{w \in S_n \mid A \leq w$, and $v \in S_n$ with $A \leq v \leq w$ implies $ v=w\}$ (where $\leq$ is in (strong) Bruhat order). This computation is performed by taking the antidiagonal initial ideal determined by $A$ and extracting the permutations indexing its components via schubDecompose.
Example
A = matrix{{0,1,0,0},{0,0,1,0},{1,-1,0,1},{0,1,0,0}}
permOverASM A
permSetOfASM A
///

doc ///
Expand Down Expand Up @@ -1008,7 +1008,7 @@ doc ///
:Boolean
Description
Text
Given a list of permutations in 1-line notation, check whether the union of their matrix schubert varieties is an ASM variety. This function uses entrywiseMaxRankTable to construct the rank table that is the entrywise maximum of the rank tables of the input permutations. It then constructs an ASM $A$ from that rank table and uses permOverASM to check if the permutation set of $A$ is equal to the input list of permutations.
Given a list of permutations in 1-line notation, check whether the union of their matrix schubert varieties is an ASM variety. This function uses entrywiseMaxRankTable to construct the rank table that is the entrywise maximum of the rank tables of the input permutations. It then constructs an ASM $A$ from that rank table and uses permSetOfASM to check if the permutation set of $A$ is equal to the input list of permutations.

If the union of the matrix Schubert varieties of the input list of permutations is an ASM variety, it must be the ASM variety considered by this algorithm.
Example
Expand Down
8 changes: 4 additions & 4 deletions MatrixSchubert/MatrixSchubertTests.m2
Original file line number Diff line number Diff line change
Expand Up @@ -377,8 +377,8 @@ testIdealMat = schubDetIdeal(I);
assert(schubDecompose schubDetIdeal w == {{1, 2, 3, 4}})
assert(schubDecompose schubDetIdeal I == {{1, 2, 3, 4}})

--permOverASM--
assert(permOverASM I == {{1, 2, 3, 4}})
-permSetOfASM--
assert(permSetOfASM I == {{1, 2, 3, 4}})

--isIntersectionSchubIdeals--
assert(isIntersectionSchubIdeals schubDetIdeal w == true );
Expand Down Expand Up @@ -838,12 +838,12 @@ assert(schubDecompose schubDetIdeal PI == {{3, 6, 1, 2, 4, 5}, {6, 2, 3, 1, 4, 5
///

TEST ///
--permOverASM--
--permSetOfASM--
w = {2,1,6,3,5,4};
I = matrix{{0,0,1,0,0},{0,1,-1,1,0},{1,-1,1,0,0},{0,1,0,-1,1},{0,0,0,1,0}};
PI = matrix{{0,0,1,0,0},{0,1,-1,1,0},{1,-1,1,0,0},{0,1,0,-1,0},{0,0,0,1,0}};

assert(permOverASM I == {{3, 5, 1, 2, 4}, {5, 2, 3, 1, 4}, {4, 2, 5, 1, 3}, {3, 4, 1, 5, 2}, {4, 2, 3, 5, 1}})
assert(permSetOfASM I == {{3, 5, 1, 2, 4}, {5, 2, 3, 1, 4}, {4, 2, 5, 1, 3}, {3, 4, 1, 5, 2}, {4, 2, 3, 5, 1}})
///

TEST ///
Expand Down

0 comments on commit 14a8bfa

Please sign in to comment.