Skip to content

Mashimiao/libcontainer

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Libcontainer provides a native Go implementation for creating containers with namespaces, cgroups, capabilities, and filesystem access controls. It allows you to manage the lifecycle of the container performing additional operations after the container is created.

Container

A container is a self contained execution environment that shares the kernel of the host system and which is (optionally) isolated from other containers in the system.

Using libcontainer

To create a container you first have to initialize an instance of a factory that will handle the creation and initialization for a container.

Because containers are spawned in a two step process you will need to provide arguments to a binary that will be executed as the init process for the container. To use the current binary that is spawning the containers and acting as the parent you can use os.Args[0] and we have a command called init setup.

root, err := libcontainer.New("/var/lib/container", libcontainer.InitArgs(os.Args[0], "init"))
if err != nil {
    log.Fatal(err)
}

Once you have an instance of the factory created we can create a configuration struct describing how the container is to be created. A sample would look similar to this:

config := &configs.Config{
    Rootfs: rootfs,
    Capabilities: []string{
        "CHOWN",
        "DAC_OVERRIDE",
        "FSETID",
        "FOWNER",
        "MKNOD",
        "NET_RAW",
        "SETGID",
        "SETUID",
        "SETFCAP",
        "SETPCAP",
        "NET_BIND_SERVICE",
        "SYS_CHROOT",
        "KILL",
        "AUDIT_WRITE",
    },
    Namespaces: configs.Namespaces([]configs.Namespace{
        {Type: configs.NEWNS},
        {Type: configs.NEWUTS},
        {Type: configs.NEWIPC},
        {Type: configs.NEWPID},
        {Type: configs.NEWNET},
    }),
    Cgroups: &configs.Cgroup{
        Name:            "test-container",
        Parent:          "system",
        AllowAllDevices: false,
        AllowedDevices:  configs.DefaultAllowedDevices,
    },

    Devices:  configs.DefaultAutoCreatedDevices,
    Hostname: "testing",
    Networks: []*configs.Network{
        {
            Type:    "loopback",
            Address: "127.0.0.1/0",
            Gateway: "localhost",
        },
    },
    Rlimits: []configs.Rlimit{
        {
            Type: syscall.RLIMIT_NOFILE,
            Hard: uint64(1024),
            Soft: uint64(1024),
        },
    },
}

Once you have the configuration populated you can create a container:

container, err := root.Create("container-id", config)

To spawn bash as the initial process inside the container and have the processes pid returned in order to wait, signal, or kill the process:

process := &libcontainer.Process{
    Args:   []string{"/bin/bash"},
    Env:    []string{"PATH=/bin"},
    User:   "daemon",
    Stdin:  os.Stdin,
    Stdout: os.Stdout,
    Stderr: os.Stderr,
}

err := container.Start(process)
if err != nil {
    log.Fatal(err)
}

// wait for the process to finish.
status, err := process.Wait()
if err != nil {
    log.Fatal(err)
}

// destroy the container.
container.Destroy()

Additional ways to interact with a running container are:

// return all the pids for all processes running inside the container.
processes, err := container.Processes() 

// get detailed cpu, memory, io, and network statistics for the container and 
// it's processes.
stats, err := container.Stats()


// pause all processes inside the container.
container.Pause()

// resume all paused processes.
container.Resume()

nsinit

nsinit is a cli application which demonstrates the use of libcontainer.
It is able to spawn new containers or join existing containers. A root filesystem must be provided for use along with a container configuration file.

To use nsinit, cd into a Linux rootfs and copy a container.json file into the directory with your specified configuration. Environment, networking, and different capabilities for the container are specified in this file. The configuration is used for each process executed inside the container.

See the sample_configs folder for examples of what the container configuration should look like.

To execute /bin/bash in the current directory as a container just run the following as root:

nsinit exec --tty /bin/bash

If you wish to spawn another process inside the container while your current bash session is running, run the same command again to get another bash shell (or change the command). If the original process (PID 1) dies, all other processes spawned inside the container will be killed and the namespace will be removed.

You can identify if a process is running in a container by looking to see if state.json is in the root of the directory.

You may also specify an alternate root place where the container.json file is read and where the state.json file will be saved.

Future

See the roadmap.

Copyright and license

Code and documentation copyright 2014 Docker, inc. Code released under the Apache 2.0 license. Docs released under Creative commons.

Hacking on libcontainer

First of all, please familiarise yourself with the libcontainer Principles.

If you're a contributor or aspiring contributor, you should read the Contributors' Guide.

If you're a maintainer or aspiring maintainer, you should read the Maintainers' Guide and "How can I become a maintainer?" in the Contributors' Guide.

Packages

No packages published

Languages

  • Go 98.3%
  • C 1.1%
  • Other 0.6%