Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Handle unseen values in MCA #181

Merged
merged 6 commits into from
Nov 17, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1,946 changes: 1,087 additions & 859 deletions poetry.lock

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion prince/famd.py
Original file line number Diff line number Diff line change
Expand Up @@ -112,7 +112,7 @@ def row_coordinates(self, X):
prop = X_cat.sum() / X_cat.sum().sum() * 2
X_cat = X_cat.sub(X_cat.mean(axis="rows")).div(prop**0.5, axis="columns")

Z = pd.concat([X_num, X_cat], axis=1)
Z = pd.concat([X_num, X_cat.sparse.to_dense()], axis=1).fillna(0.0)

return super().row_coordinates(Z)

Expand Down
8 changes: 4 additions & 4 deletions prince/mca.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,6 @@ def __init__(
random_state=None,
engine="sklearn",
one_hot=True,
handle_unknown="error",
):
super().__init__(
n_components=n_components,
Expand All @@ -33,12 +32,12 @@ def __init__(
engine=engine,
)
self.one_hot = one_hot
self.handle_unknown = handle_unknown

def _prepare(self, X):
if self.one_hot:
# Create the one-hot encoder if it doesn't exist (usually because we're in the fit method)
X = pd.get_dummies(X, columns=X.columns)
X = pd.get_dummies(X, columns=X.columns, prefix_sep="__")
if (one_hot_columns_ := getattr(self, "one_hot_columns_", None)) is not None:
X = X.reindex(columns=one_hot_columns_.union(X.columns), fill_value=False)
return X

def get_feature_names_out(self, input_features=None):
Expand All @@ -62,6 +61,7 @@ def fit(self, X, y=None):

# One-hot encode the data
one_hot = self._prepare(X)
self.one_hot_columns_ = one_hot.columns

# We need the number of columns to apply the Greenacre correction
self.J_ = one_hot.shape[1]
Expand Down
8 changes: 4 additions & 4 deletions pyproject.toml
Original file line number Diff line number Diff line change
@@ -1,15 +1,15 @@
[tool.poetry]
name = "prince"
version = "0.13.1"
version = "0.14.0"
description = "Factor analysis in Python: PCA, CA, MCA, MFA, FAMD, GPA"
authors = ["Max Halford <maxhalford25@gmail.com>"]
license = "MIT"

[tool.poetry.dependencies]
python = "^3.9"
scikit-learn = "^1.0.2"
pandas = "^1.4.1 || ^2.0.0"
altair = "^4.2.2 || ^5.0.0"
scikit-learn = "^1.5.1"
pandas = "^2.2.0"
altair = "^5.0.0"

[tool.poetry.group.dev.dependencies]
nbconvert = "^7.2.9"
Expand Down
30 changes: 30 additions & 0 deletions tests/test_famd.py
Original file line number Diff line number Diff line change
Expand Up @@ -96,3 +96,33 @@ def test_col_contrib(self):
F = load_df_from_R("famd$var$contrib")
P = self.famd.column_contributions_
np.testing.assert_allclose(F, P * 100)


def test_issue_169():
"""

https://github.com/MaxHalford/prince/issues/169

>>> import pandas as pd
>>> from prince import FAMD
>>> df = pd.DataFrame({'var1':['c', 'a', 'b','c'], 'var2':['x','y','y','z'],'var2': [0.,10.,30.4,0.]})

>>> famd = FAMD(n_components=2, random_state=42)
>>> famd = famd.fit(df[:3])

>>> famd.transform(df[0:3])
component 0 1
0 -1.303760 -0.658334
1 -0.335621 0.981047
2 1.639381 -0.322713

>>> famd.transform(df[0:2])
component 0 1
0 -1.000920 -0.669274
1 -0.092001 0.669274

>>> famd.transform(df[3:])
component 0 1
3 -0.869173 -1.215925e-16

"""
92 changes: 72 additions & 20 deletions tests/test_mca.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,10 @@ def test_col_coords(self):
if self.sup_cols:
F = pd.concat((F, load_df_from_R("ca$quali.sup$coord")))
P = self.ca.column_coordinates(self.dataset)
np.testing.assert_allclose(F.abs(), P.abs())
# Prince adds a prefix to each column. We need to remove it in order to align the rows
# of the two dataframes
P.index = [idx.split("__", 1)[1] for idx in P.index]
np.testing.assert_allclose(F.abs(), P.abs().loc[F.index])
else:
super().test_col_coords()

Expand All @@ -74,7 +77,10 @@ def test_col_cos2(self):
if self.sup_cols:
F = pd.concat((F, load_df_from_R("ca$quali.sup$cos2")))
P = self.ca.column_cosine_similarities(self.dataset)
np.testing.assert_allclose(F, P)
# Prince adds a prefix to each column. We need to remove it in order to align the rows
# of the two dataframes
P.index = [idx.split("__", 1)[1] for idx in P.index]
np.testing.assert_allclose(F, P.loc[F.index])
else:
super().test_col_cos2()

Expand All @@ -89,23 +95,23 @@ def test_with_and_without_one_hot():
>>> mca = prince.MCA(n_components=2, one_hot=True, engine="scipy")
>>> mca = mca.fit(df)
>>> mca.transform(df).round(2).abs().sort_index(axis='columns')
0 1
0 2.0 0.00
1 0.5 0.65
2 0.5 0.65
3 0.5 0.65
4 0.5 1.94
0 1
0 0.00 2.0
1 0.65 0.5
2 0.65 0.5
3 0.65 0.5
4 1.94 0.5

>>> mca = prince.MCA(n_components=2, one_hot=False, engine="scipy")
>>> one_hot = pd.get_dummies(df, columns=['foo', 'bar'])
>>> mca = mca.fit(one_hot)
>>> mca.transform(one_hot).round(2).abs().sort_index(axis='columns')
0 1
0 2.0 0.00
1 0.5 0.65
2 0.5 0.65
3 0.5 0.65
4 0.5 1.94
0 1
0 0.00 2.0
1 0.65 0.5
2 0.65 0.5
3 0.65 0.5
4 1.94 0.5

"""

Expand All @@ -122,12 +128,12 @@ def test_issue_131():
>>> mca = prince.MCA(engine="scipy")
>>> mca = mca.fit(df)
>>> mca.transform(df).round(2).abs().sort_index(axis='columns')
0 1
0 2.0 0.00
1 0.5 0.65
2 0.5 0.65
3 0.5 0.65
4 0.5 1.94
0 1
0 0.00 2.0
1 0.65 0.5
2 0.65 0.5
3 0.65 0.5
4 1.94 0.5

>>> mca.K_, mca.J_
(2, 8)
Expand Down Expand Up @@ -185,3 +191,49 @@ def test_type_doesnt_matter():

for i in range(len(outputs) - 1):
np.testing.assert_allclose(outputs[i], outputs[i + 1])


issue_161_data = """
,category,userid,location,applicationname,browser\n
0,Portal Login,a@b.com,"San Jose, CA, United States",A,Chrome\n
1,Application Access,b@b.com,"San Jose, CA, United States",B,Other\n
2,Application Access,a@b.com,"San Jose, CA, United States",C,Other\n
3,Portal Login,c@b.com,"San Diego, CA, United States",A,Chrome\n
"""


def test_issue_161():
"""

https://github.com/MaxHalford/prince/issues/161

>>> import io
>>> data = pd.read_csv(io.StringIO(issue_161_data), index_col=0)

>>> mca = prince.MCA(
... n_components=10,
... n_iter=3,
... copy=True,
... check_input=True,
... engine='sklearn',
... random_state=42
... )
>>> mca = mca.fit(data[:3])

>>> mca.eigenvalues_summary
eigenvalue % of variance % of variance (cumulative)
component
0 0.673 67.32% 67.32%
1 0.327 32.68% 100.00%

>>> mca.row_coordinates(data[:3])
0 1
0 1.120811 -0.209242
1 -0.820491 -0.571660
2 -0.300320 0.780902

>>> mca.transform(data[3:])
0 1
3 1.664888 -0.640285

"""
Loading