The objective of the repository is to learn and build machine learning models using Pytorch.
List of Algorithms Covered
π Day 1 - Linear Regression
π Day 2 - Logistic Regression
π Day 3 - Decision Tree
π Day 4 - KMeans Clustering
π Day 5 - Naive Bayes
π Day 6 - K Nearest Neighbour (KNN)
π Day 7 - Support Vector Machine
π Day 8 - Tf-Idf Model
π Day 9 - Principal Components Analysis
π Day 10 - Lasso and Ridge Regression
π Day 11 - Gaussian Mixture Model
π Day 12 - Linear Discriminant Analysis
π Day 13 - Adaboost Algorithm
π Day 14 - DBScan Clustering
π Day 15 - Multi-Class LDA
π Day 16 - Bayesian Regression
π Day 17 - K-Medoids
π Day 18 - TSNE
π Day 19 - ElasticNet Regression
π Day 20 - Spectral Clustering
π Day 21 - Latent Dirichlet
π Day 22 - Affinity Propagation
π Day 23 - Gradient Descent Algorithm
π Day 24 - Regularization Techniques
π Day 25 - RANSAC Algorithm
π Day 26 - Normalizations
π Day 27 - Multi-Layer Perceptron
π Day 28 - Activations
π Day 29 - Optimizers
π Day 30 - Loss Functions
- Sklearn Library
- ML-Glossary
- ML From Scratch (Github)