Md Raqib Khan · Anshul Negi · Asuhtosh Kulkarni · Shruti S. Phutke · Santosh Kumar Vipparthi · Subrahmanyam Murala
![t-SNE Visualization](/Mdraqibkhan/Phaseformer/raw/main/tsne_visuals.png)
The separate clusters for clean and degraded amplitude show that there is more effect of degradation on amplitude content compared to phase content, which has overlapping clusters for clean and noisy images.
To evaluate the model on different datasets using the provided checkpoints and sample degraded images.
- Sample degraded images for testing: Available in
dataset/dataset_name/
. - Checkpoints for evaluation: Provided in
checkpoints/dataset-name/
. - Results storage: After successful execution, the results will be saved in the
results/dataset-name/
folder.
├── dataset
│ ├── UIEB
│ ├── U-45
│ ├── SQUID
│ ├── UCCS
│ ├── UFO-120
│ ├── Low_light
├── checkpoints
│ ├── UIEB
│ ├── UFO-120
│ ├── Low_light
├── results
│ ├── UIEB
│ ├── U-45
│ ├── SQUID
│ ├── UCCS
│ ├── UFO-120
│ ├── Low_light
To evaluate the model on different datasets, follow the instructions below for each specific dataset:
Run the following command to evaluate the model on the UIEB dataset:
python test.py --dataset datasets/UIEB/ --checkpoints_path /checkpoints/UIEB/ --save_path Results/UIEB
Run the following command to evaluate the model on the U-45 dataset:
python test.py --dataset dataset/U-45/ --checkpoints_path /checkpoints/UIEB/ --save_path Results/U-45
Run the following command to evaluate the model on the SQUID dataset:
python test.py --dataset dataset/SQUID/ --checkpoints_path /checkpoints/UIEB/ --save_path Results/SQUID
Run the following command to evaluate the model on the UCCS dataset:
python test.py --dataset dataset/UCCS/ --checkpoints_path /checkpoints/UIEB/ --save_path Results/UCCS
Run the following command to evaluate the model on the UCCS dataset:
python test.py --dataset dataset/UFO-120/ --checkpoints_path /checkpoints/UFO-120/ --save_path Results/UFO-120
Run the following command to evaluate the model on the UCCS dataset:
python test.py --dataset dataset/UCCS/ --checkpoints_path /checkpoints/Low_light/ --save_path Results/Low_light
- Structure of data for training should be like
uw_data/ # here uw_data can be any underwater datsets folder like UIEB,UFO-120 etc.
├── train/
│ ├── a/ # Input images
│ └── b/ # Reference (ground truth) images
└── test/
├── a/ # Input images
└── b/ # Reference (ground truth) images
- run
pyhthon train.py
If you find this work helpful, please reference it as follows:
@article{khan2024phaseformer,
title={Phaseformer: Phase-based Attention Mechanism for Underwater Image Restoration and Beyond},
author={Khan, MD and Negi, Anshul and Kulkarni, Ashutosh and Phutke, Shruti S and Vipparthi, Santosh Kumar and Murala, Subrahmanyam},
journal={arXiv preprint arXiv:2412.01456},
year={2024}
}
Special thanks to the awesome repositories UIPTA and Spectroformer, which made this project possible.