Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update pysr_demo.ipynb #624

Merged
merged 1 commit into from
May 7, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion examples/pysr_demo.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -396,7 +396,7 @@
"id": "wbWHyOjl2_kX"
},
"source": [
"Since `quart` is arguably more complex than the other operators, you can also give it a different complexity, using, e.g., `complexity_of_operators={\"quart\": 2}` to give it a complexity of 2 (instead of the default 2). You can also define custom complexities for variables and constants (`complexity_of_variables` and `complexity_of_constants`, respectively - both take a single number).\n",
"Since `quart` is arguably more complex than the other operators, you can also give it a different complexity, using, e.g., `complexity_of_operators={\"quart\": 2}` to give it a complexity of 2 (instead of the default 1). You can also define custom complexities for variables and constants (`complexity_of_variables` and `complexity_of_constants`, respectively - both take a single number).\n",
"\n",
"\n",
"One can also add a binary operator, with, e.g., `\"myoperator(x, y) = x^2 * y\"`. All Julia operators that work on scalar 32-bit floating point values are available.\n",
Expand Down