Skip to content

MoCoMakers/four_parameter_logistic_regression_coefficients

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Usage

Install the requrirements file:

pip install -r requirements.txt

Run the main file to make sure it is working:

python 4PL.py

Modify the 4PL.py main function with your own concentration_array and response_array or call it as a function as follows:

import 4PL

concentration_array = ... # Your values here
response_array = ... #Your values here

A_fit_final, B_fit_final, C_fit_final, D_fit_final, params_final, x_data_final, y_data_final, sse_final, rmse_final, r2_final, curve_direction_final = 4PL.calculate_coefficients(concentration_array, response_array)

Format for the data

See the 4PL.py main function for examples of data structure (and expected resutlts)

Example output:

Final curve direction: up
Final parameters: A = 0.153578, B = 1.771758, C = 19.349401, D = 28.447923
Goodness-of-fit measures: SSE = 0.157375, RMSE = 0.132235, R^2 = 0.999766

Dose response curve

About us

See our community science computation biology project here - https://sites.google.com/dmvpetridish.com/comp-bio

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages