Skip to content

MoeinSorkhei/Thorax-Disease-Classification

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Thorax-Disease-Classification

Arguments:

Some of the important arguments are:

--prep_data: when used, the actual data will be downloaded and extracted to the data folder

--model: specifies the pre-trained model to be used in the unified architecture, e.g., resnet.

--eval: should be used when evaluating the models for drawing ROC curves and computing AUC values.

--epoch: specifies which checkpoint should be used for model evaluation

--lr: the learning rate for training the model (should also be specified for model evaluation to find the correct checkpoint folder).

--freezed: if specified, the parameters of the pre-trained model will be freezed.

Example scripts:

Data preparation: python3 main.py --prep_data

Training: python3 main.py --model resnet --lr 2e-6 --freezed

Evluation: python3 main.py --eval --model resnet --freezed --lr 2e-6 --epoch 20

Special packages:

Some of the packages needed to be installed include:

  • torchsummary

Notes:

Default parameters like the learning rate are in the params.json file, but could be changed if specified in the program arguments (to be explained mode later).

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •