Skip to content

GenCompass: Germline Ensemble Calling of Mutations with Parabricks Accelerated Software Suite

Notifications You must be signed in to change notification settings

NCI-CGR/GenCompass_WGS

Repository files navigation

GenCompass: Germline Ensemble Calling of Mutations with Parabricks Accelerated Software Suite


AUTHORS

Ben Jordan and Laura Egolf

Technical Lead: Komal Jain


Table of Contents

GenCompass Overview

The GenCompass workflow is separated into five main modules: premapping and premapping-qc, mapping and postmap-qc, variant calling, joint genotyping, and harmonization

GenCompass Overview

Premap-QC

Fastp

A tool designed to provide fast all-in-one preprocessing for FastQ files. This tool is developed in C++ with multithreading supported to afford high performance.

Shifu Chen, Yanqing Zhou, Yaru Chen, Jia Gu; fastp: an ultra-fast all-in-one FASTQ preprocessor, Bioinformatics, Volume 34, Issue 17, 1 September 2018, Pages i884–i890, https://doi.org/10.1093/bioinformatics/bty560

Fastq-Screen

FastQ Screen allows you to set up a standard set of libraries against which all of your sequences can be searched. Your search libraries might contain the genomes of all of the organisms you work on, along with PhiX, Vectors or other contaminants commonly seen in sequencing experiments.

FastQC

FastQC aims to provide a simple way to do some quality control checks on raw sequence data coming from high throughput sequencing pipelines. It provides a modular set of analyses which you can use to give a quick impression of whether your data has any problems of which you should be aware before doing any further analysis.

Mapping

Parabricks fq2bam

Generate BAM/CRAM output given one or more pairs of FASTQ files. Can also optionally generate a BQSR report.

Parabricks collectmultiplemetrics

Run a GPU-accelerated version of GATK’s CollectMultipleMetrics.

This tool applies an accelerated version of the GATK CollectMultipleMetrics for assessing BAM file metrics such as alignment success, quality score distributions, GC bias, and sequencing artifacts. This functions as a ‘meta-metrics’ tool that can run any combination of the available metrics tools in GATK to perform an overall assessment of how well a sequencing run has been performed.

Parabricks bammetrics

Accelerated GATK4 CollectWGSMetrics.

This tool applies an accelerated version of the GATK CollectWGSMetrics for assessing coverage and quality of an aligned whole-genome BAM file. This includes metrics such as the fraction of reads that pass the base and mapping quality filters, and the coverage levels (read-depth) across the genome. These act as an overall quality check for the user, allowing assessment of how well a sequencing run has performed.

VerifyBamId

Verifies whether the reads in particular file match previously known genotypes for an individual (or group of individuals), and checks whether the reads are contaminated as a mixture of two samples.

Samtools coverage

Produces a histogram or table of coverage per chromosome. Coverage is defined as the percentage of positions within each bin with at least one base aligned against it.

Kraken

Kraken is a taxonomic sequence classifier that assigns taxonomic labels to DNA sequences. Kraken examines the $k$-mers within a query sequence and uses the information within those $k$-mers to query a database. That database maps $k$-mers to the lowest common ancestor (LCA) of all genomes known to contain a given $k$-mer.

Somalier

somalier makes checking any number of samples for identity easy directly from the alignments or from jointly-called VCFs

Variant Calling

Parabricks DeepVariant

Run a GPU-accelerated DeepVariant algorithm.

DeepVariant is a deep learning based variant caller developed by Google for germline variant calling of high-throughput sequencing data. It works by taking aligned sequencing reads in BAM/CRAM format and utilizes a convolutional neural network (CNN) to classify the locus into true underlying genomic variation or sequencing error. DeepVariant can therefore call single nucleotide variants (SNVs) and insertions/deletions (InDels) from sequencing data at high accuracy in germline samples.

Parabricks HaplotypeCaller

Run a GPU-accelerated haplotypecaller.

This tool applies an accelerated GATK CollectMultipleMetrics for assessing the metrics of a BAM file, such as including alignment success, quality score distributions, GC bias, and sequencing artifacts. This functions as a ‘meta-metrics’ tool, and can run any combination of the available metrics tools in GATK to assess overall how well a sequencing run has performed. The available metrics tools (PROGRAMs) can be found in the command line example below.

You can provide an optional BQSR report to fix the BAM, similar to ApplyBQSR. In this case, the updated base qualities will be used.

Strelka2

Strelka2 is a fast and accurate small variant caller optimized for analysis of germline variation in small cohorts and somatic variation in tumor/normal sample pairs. The germline caller employs an efficient tiered haplotype model to improve accuracy and provide read-backed phasing, adaptively selecting between assembly and a faster alignment-based haplotyping approach at each variant locus. The germline caller also analyzes input sequencing data using a mixture-model indel error estimation method to improve robustness to indel noise.

Joint Genotype

GLNexus

GLnexus (GL, Genotype Likelihood), a system for joint variant calling designed to scale up to the largest foreseeable human cohorts. GLnexus combines scalable joint calling algorithms with a persistent database that grows efficiently as additional participants are sequenced.

Harmonize

Several ensemble genotypes (GT) fields are generated

  • ensembled GT in the final output (GT): If all 3 callers have calls: any of the two callers are concordant: GT is set to that concordant GT; none are concordant: GT is set to ./. If only 2 callers have calls: they are concordant: GT is set to that concordant GT; they are not concordant: GT is set to ./. If only one caller has call, it’s set to that GT
  • Majority concensus voting (concensus_GT): If only one caller has call, it’s set to ./.
  • DV priority voting (dv_priority_GT): If there is DV call, set to that GT If there’s no DV call: HC and strelka2 calls the same genotype, GT is set to that genotype Otherwise GT is set to ./.

Running GenCompass

The batch_builder/prepare_gencompass.py script is used to build input json files and swarm scripts for the various workflows included in GenCompass. The script has several commands that can be chained together

Before using

  1. Create a manifest file
  2. Create a list of fastq files
  3. (Optional) Create a sample list file
  4. Copy batch_builder/templates/project_parameters.json to working directory, update parameters with project specific data
  5. (Optional) Update input templates with project specific parameters if different from default
    1. Update docker if not using cgrlab DockerHub images
    2. Update task resource requirements if needed
  6. (Optional) Set environmental variable GENCOMPASS_PROJECT_PARAMETERS (this can be also set with a command line argument)

Example 1. Generating all workflow files

# Provide project parameters json in CLI. Optinally provide an input template directory if needed.
python GenCompass_WGS/batch_builder/prepare_gencompass.py \
all \
--project_parameters ./my_project_parameters.json

The folling folders and files are generated

  • workflows/ : workflow wdl files to be used
  • workflow_options/: cromwell options, used for setting the final results directory
  • *.swarm files - commands used for submitting the jobs

The batch builder generates swarm files, used on slurm systems to submit many jobs at once. Each line is a command which can be run individually.

Running

swarm example_premap.swarm

File Order Description
example_premap.swarm 1 Premap QC
example_premap_report.swarm 2 Premap QC report
example_mapping.swarm 3 Mapping with fq2bam
example_postmap_qc.swarm 4 Postmap QC
example_mapping_report.swarm 5 Mapping Report
example_variant_calling.swarm 6 Variant Calling
example_joint_genotype.swarm 7 Joint Genotype
example_harmonize.swarm 8 Harmonize

Example 2. Generate single workflow inputs

python Gencompass/batch_builder/prepare_gencompass.py \
premap_qc \
--project_parameters ./my_project_parameters.json \
--input_template ./project_input_templates/premap_qc.input_template.json

Single workflows available to generate: premap_qc, premap_report, mapping, postmap_qc, mapping_report, variant_calling, joint_genotype, harmonize

Input Files

Manifest

  • The manifest file can be a csv or xlsx file.
  • Required columns: Sample ID, Flowcell
  • Optional column : Sample Run ID

example_manifest.csv

Sample ID Flowcell Sample Run ID
EXAMPLE-SAMPLE-136 B00FLOWCELL SAMPLE_RUN-ID-6292
EXAMPLE-SAMPLE-003 B00FLOWCELL SAMPLE_RUN-ID-5012
EXAMPLE-SAMPLE-082 A00FLOWCELL SAMPLE_RUN-ID-4014
EXAMPLE-SAMPLE-082 A00FLOWCELL SAMPLE_RUN-ID-4751

Sample List (optional)

example_samples.txt

EXAMPLE-SAMPLE-136
EXAMPLE-SAMPLE-003

Fastq Files

example_fastq_files.txt

/path/to/fastq/SAMPLE_RUN-ID-6292_S2_L001_R1_001.fastq.gz
/path/to/fastq/SAMPLE_RUN-ID-6292_S2_L001_R2_001.fastq.gz
/path/to/fastq/SAMPLE_RUN-ID-6292_S2_L002_R1_001.fastq.gz
/path/to/fastq/SAMPLE_RUN-ID-6292_S2_L002_R2_001.fastq.gz
/path/to/fastq/SAMPLE_RUN-ID-5012_S2_L001_R1_001.fastq.gz
/path/to/fastq/SAMPLE_RUN-ID-5012_S2_L001_R2_001.fastq.gz
/path/to/fastq/SAMPLE_RUN-ID-5012_S2_L002_R1_001.fastq.gz
/path/to/fastq/SAMPLE_RUN-ID-5012_S2_L002_R2_001.fastq.gz

Project Parameters JSON

Note: If samples is not provided then all samples in manifest will be used.

project_parameters.json

{
    "project": "ExampleProject",
    "manifest": "Example_Manifest.csv",
    "fastq_files" : "example_fastq_files.txt",
    "reference_bundle": "/path/to/ReferenceBundle",
    "samples" : "example_samples.txt",
    "results_directory": "workflow_results",
    "logs_directory" :"workflow_logs",
    "working_directory" : "./",
    "cromwell_jar": "$CROMWELL_JAR",
    "cromwell_config": "$CROMWELL_CONFIG",
    "singularity_cachedir": "./singularity_cache"
}

Dependencies

GenCompass runs using cromwell. Individual tasks have been containerized and uploaded to DockerHub. Software required to run workflows

  • Docker / Singularity
  • Cromwell 84+
  • Java 12.0.1

Within the containers the following software is used.

  • python 3.12
    • numpy
    • pandas
    • xlsxwriter
    • click
  • parallel current (20230122)
  • singularity 3.10.5
  • samtools 1.21 (includes bcftools)
  • kraken 2.1.2
  • parabricks 4.2.0
  • multiqc 1.13
  • seqtk 1.3
  • fastq_screen 0.15.2
  • fastqc 0.11.9
  • verifybamid 2.0.1
  • cutadapt 4.0
  • fastp 0.23.2
  • strelka 2.9.0
  • glnexus 1.4.1

Output Folder Structure

Premap-QC Output Folder Structure

workflow_results/
├── fastp
│   ├── SAMPLE1
│   │   ├── RUN-ID1_S8_L001.html
│   │   ├── RUN-ID1_S8_L001.json
│   │   ├── RUN-ID1_S8_L001.R1.fastp.fastq.gz
│   │   ├── RUN-ID1_S8_L001.R2.fastp.fastq.gz
│   │   ├── ...
│   │   ├── RUN-ID1_S8_L004.html
│   │   ├── RUN-ID1_S8_L004.json
│   │   ├── RUN-ID1_S8_L004.R1.fastp.fastq.gz
│   │   └── RUN-ID1_S8_L004.R2.fastp.fastq.gz
│   ├── SAMPLE2
│       ├── ...
│       └── ...
├── fastqc
│   ├── SAMPLE1
│   │   ├── RUN-ID1_S8_L001.R1.fastp_fastqc.html
│   │   ├── RUN-ID1_S8_L001.R1.fastp_fastqc.zip
│   │   ├── RUN-ID1_S8_L001.R2.fastp_fastqc.html
│   │   ├── RUN-ID1_S8_L001.R2.fastp_fastqc.zip
│   │   ├── ...
│   │   ├── RUN-ID1_S8_L004.R1.fastp_fastqc.html
│   │   ├── RUN-ID1_S8_L004.R1.fastp_fastqc.zip
│   │   ├── RUN-ID1_S8_L004.R2.fastp_fastqc.html
│   │   └── RUN-ID1_S8_L004.R2.fastp_fastqc.zip
│   └── SAMPLE2
│       ├── ...
│       └── ...
├── fastq_screen
│   ├── SAMPLE1
│   │   ├── SAMPLE1_screen.html
│   │   ├── SAMPLE1_screen.png
│   │   ├── SAMPLE1_screen.txt
│   │   └── SAMPLE1.tagged.fastq.gz
│   └── SAMPLE2
│       ├── ..
│       └── ..

Mapping Output Folder Structure

workflow_results/
├── fq2bam
│   ├── SAMPLE1
│   │   ├── SAMPLE1.bam
│   │   ├── SAMPLE1.bam.bai
│   │   └── SAMPLE1.BQSR-REPORT.txt
│   └── SAMPLE2
│       ├── ...
│       └── ...
├── kraken2
│   ├── SAMPLE1
│   │   ├── SAMPLE1.kraken.mpaStyle.report
│   │   └── SAMPLE1.kraken.output
│   └── SAMPLE2
│       └── ...
├── metrics
│   ├── bammetrics
│   │   ├── SAMPLE1
│   │   │   └── SAMPLE1.bammetrics.txt
│   │   └── SAMPLE2
│   │       └── SAMPLE2.bammetrics.txt
│   └── collectmultiplemetrics
│       ├── SAMPLE1
│       │   ├── alignment.txt
│       │   ├── base_distribution_by_cycle.pdf
│       │   ├── base_distribution_by_cycle.png
│       │   ├── base_distribution_by_cycle.txt
│       │   ├── gcbias_0.png
│       │   ├── gcbias_detail.txt
│       │   ├── gcbias.pdf
│       │   ├── gcbias_summary.txt
│       │   ├── insert_size.pdf
│       │   ├── insert_size.png
│       │   ├── insert_size.txt
│       │   ├── mean_quality_by_cycle.pdf
│       │   ├── mean_quality_by_cycle.png
│       │   ├── mean_quality_by_cycle.txt
│       │   ├── qualityscore.pdf
│       │   ├── qualityscore.png
│       │   ├── qualityscore.txt
│       │   ├── quality_yield.txt
│       │   ├── sequencingArtifact.bait_bias_detail_metrics.txt
│       │   ├── sequencingArtifact.bait_bias_summary_metrics.txt
│       │   ├── sequencingArtifact.error_summary_metrics.txt
│       │   ├── sequencingArtifact.pre_adapter_detail_metrics.txt
│       │   └── sequencingArtifact.pre_adapter_summary_metrics.txt
│       └── SAMPLE2
│       │   ├── ...
│           └── ...
├── samtools_coverage
│   ├── SAMPLE1
│   │   └── SAMPLE1.samtools_coverage.txt
│   └── SAMPLE2
│       └── SAMPLE2.samtools_coverage.txt
├── somalier
│   └── extract
│       ├── SAMPLE1.somalier
│       └── SAMPLE2.somalier
└── verifybamid
    ├── SAMPLE1
    │   ├── SAMPLE1.Ancestry
    │   └── SAMPLE1.selfSM
    └── SAMPLE2
        ├── SAMPLE2.Ancestry
        └── SAMPLE2.selfSM

Variant Calling Output Folder Structure

workflow_results/
├── deepvariant
│   ├── SAMPLE1
│   │   ├── SAMPLE1.deepvariant.g.vcf.gz
│   │   └── SAMPLE1.deepvariant.g.vcf.gz.tbi
│   └── SAMPLE2
│       ├── SAMPLE2.deepvariant.g.vcf.gz
│       └── SAMPLE2.deepvariant.g.vcf.gz.tbi
├── haplotypecaller
│   ├── SAMPLE1
│   │   ├── SAMPLE1.haplotypecaller.g.vcf.gz
│   │   └── SAMPLE1.haplotypecaller.g.vcf.gz.tbi
│   └── SAMPLE2
│       ├── SAMPLE2.haplotypecaller.g.vcf.gz
│       └── SAMPLE2.haplotypecaller.g.vcf.gz.tbi
├── strelka2
│   ├── SAMPLE1
│   │   ├── SAMPLE1.strelka.genome.vcf.gz
│   │   ├── SAMPLE1.strelka.genome.vcf.gz.tbi
│   │   ├── SAMPLE1.strelka.variants.vcf.gz
│   │   └── SAMPLE1.strelka.variants.vcf.gz.tbi
│   └── SAMPLE2
│       ├── SAMPLE2.strelka.genome.vcf.gz
│       ├── SAMPLE2.strelka.genome.vcf.gz.tbi
│       ├── SAMPLE2.strelka.variants.vcf.gz
│       └── SAMPLE2.strelka.variants.vcf.gz.tbi

Joint Genotype Output Folder Structure

workflow_results/
├── deepvariant
│   ├── ensemble
│   │   ├── deepvariant.concat.bcf.gz
│   │   ├── deepvariant.concat.bcf.gz.tbi
├── haplotypecaller
│   ├── ensemble
│   │   ├── haplotypecaller.concat.bcf.gz
│   │   ├── haplotypecaller.concat.bcf.gz.tbi
├── intervals
│   ├── chr1.0.bed
│   ├── chr1.1.bed
│   ├── ...
│   ├── chrX.0.bed
│   ├── chrX.1.bed
│   └── chrY.0.bed
├── strelka2
│   ├── ensemble
│   │   ├── strelka2.concat.bcf.gz
│   │   ├── strelka2.concat.bcf.gz.tbi

Harmonize Output Folder Structure

workflow_results/
├── ensemble
│   ├── GenCompass.all_callers_merged_genotypes.vcf.gz
│   └── GenCompass.all_callers_merged_genotypes.vcf.gz.tbi

About

GenCompass: Germline Ensemble Calling of Mutations with Parabricks Accelerated Software Suite

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published