This implementation is about a fusion of batch normalization with convolution or fully connected layers in CNN of Caffe.
Caffe uses two layers to implement bn:
layer {
name: "conv1-bn"
type: "BatchNorm"
bottom: "conv1"
top: "conv1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
moving_average_fraction: 0.99
eps: 1e-8
}
}
layer {
name: "conv1-bn-scale"
type: "Scale"
bottom: "conv1"
top: "conv1"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 1
}
scale_param {
axis: 1
num_axes: 1
filler {
type: "constant"
value: 1
}
bias_term: true
bias_filler {
type: "constant"
value: 0
}
}
}
When a model training is finished, both batch norm and scale layer learn their own parameters, these parameters are fixed during inference. So, we can merget it with the convolution or fully connected layer.
For MORE details about batch normalization,see here
RUN
python convert_2_nonbnn.py
to convert the normal network to the one without bn.
RUN
python test_convert.py
to test the demo network.