Skip to content

Commit

Permalink
run black isort on recently merged files
Browse files Browse the repository at this point in the history
  • Loading branch information
RoyStegeman committed Nov 15, 2023
1 parent 7592b58 commit 99f5f63
Show file tree
Hide file tree
Showing 4 changed files with 41 additions and 147 deletions.
120 changes: 22 additions & 98 deletions validphys2/src/validphys/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,15 +53,7 @@
class Environment(Environment):
"""Container for information to be filled at run time"""

def __init__(
self,
*,
this_folder=None,
net=True,
upload=False,
dry=False,
**kwargs,
):
def __init__(self, *, this_folder=None, net=True, upload=False, dry=False, **kwargs):
if this_folder:
self.this_folder = pathlib.Path(this_folder)

Expand Down Expand Up @@ -112,10 +104,7 @@ def parse_func(self, item, **kwargs):
origsig = inspect.signature(f)
parse_func = functools.wraps(f)(parse_func)

params = [
*list(currsig.parameters.values())[:2],
*list(origsig.parameters.values())[2:],
]
params = [*list(currsig.parameters.values())[:2], *list(origsig.parameters.values())[2:]]

parse_func.__signature__ = inspect.Signature(parameters=params)

Expand Down Expand Up @@ -143,9 +132,7 @@ def parse_pdf(self, name: str):
pdf = self.loader.check_pdf(name)
except PDFNotFound as e:
raise ConfigError(
"Bad PDF: {} not installed".format(name),
name,
self.loader.available_pdfs,
"Bad PDF: {} not installed".format(name), name, self.loader.available_pdfs
) from e
except LoaderError as e:
raise ConfigError(e) from e
Expand All @@ -166,10 +153,7 @@ def parse_theoryid(self, theoryID: (str, int)):
return self.loader.check_theoryID(theoryID)
except LoaderError as e:
raise ConfigError(
str(e),
theoryID,
self.loader.available_theories,
display_alternatives="all",
str(e), theoryID, self.loader.available_theories, display_alternatives="all"
)

def parse_use_cuts(self, use_cuts: (bool, str)):
Expand Down Expand Up @@ -208,9 +192,7 @@ def produce_replicas(self, nreplica: int):
return NSList(range(1, nreplica + 1), nskey="replica")

def produce_inclusive_use_scalevar_uncertainties(
self,
use_scalevar_uncertainties: bool = False,
point_prescription: (str, None) = None,
self, use_scalevar_uncertainties: bool = False, point_prescription: (str, None) = None
):
"""Whether to use a scale variation uncertainty theory covmat.
Checks whether a point prescription is included in the runcard and if so
Expand Down Expand Up @@ -249,11 +231,7 @@ def produce_fitcontextwithcuts(self, fit, fitinputcontext):
theoryid = fitinputcontext["theoryid"]
data_input = fitinputcontext["data_input"]

return {
"dataset_inputs": data_input,
"theoryid": theoryid,
"use_cuts": CutsPolicy.FROMFIT,
}
return {"dataset_inputs": data_input, "theoryid": theoryid, "use_cuts": CutsPolicy.FROMFIT}

def produce_fitenvironment(self, fit, fitinputcontext):
"""Like fitcontext, but additionally forcing various other
Expand Down Expand Up @@ -420,12 +398,7 @@ def parse_dataset_input(self, dataset: Mapping):
# Abuse ConfigError to get the suggestions.
log.warning(ConfigError(f"Key '{k}' in dataset_input not known.", k, known_keys))
return DataSetInput(
name=name,
sys=sysnum,
cfac=cfac,
frac=frac,
weight=weight,
custom_group=custom_group,
name=name, sys=sysnum, cfac=cfac, frac=frac, weight=weight, custom_group=custom_group
)

def parse_use_fitcommondata(self, do_use: bool):
Expand All @@ -440,10 +413,7 @@ def produce_commondata(self, *, dataset_input, use_fitcommondata=False, fit=None
sysnum = dataset_input.sys
try:
return self.loader.check_commondata(
setname=name,
sysnum=sysnum,
use_fitcommondata=use_fitcommondata,
fit=fit,
setname=name, sysnum=sysnum, use_fitcommondata=use_fitcommondata, fit=fit
)
except DataNotFoundError as e:
raise ConfigError(str(e), name, self.loader.available_datasets) from e
Expand Down Expand Up @@ -529,13 +499,7 @@ def _produce_similarity_cuts(self, commondata):
matched_cuts = self._produce_matched_cuts(commondata)
inps = []
for i, ns in enumerate(nss):
with self.set_context(
ns=self._curr_ns.new_child(
{
**ns,
}
)
):
with self.set_context(ns=self._curr_ns.new_child({**ns})):
# TODO: find a way to not duplicate this and use a dict
# instead of a linear search
_, dins = self.parse_from_(None, "dataset_inputs", write=False)
Expand Down Expand Up @@ -665,10 +629,7 @@ def produce_experiment_from_input(self, experiment_input, theoryid, use_cuts, fi
input. NOTE: This might be deprecated in the future."""
return {
"experiment": self.parse_experiment(
experiment_input.as_dict(),
theoryid=theoryid,
use_cuts=use_cuts,
fit=fit,
experiment_input.as_dict(), theoryid=theoryid, use_cuts=use_cuts, fit=fit
)
}

Expand All @@ -683,9 +644,7 @@ def produce_sep_mult(self, separate_multiplicative=None):

@configparser.explicit_node
def produce_dataset_inputs_fitting_covmat(
self,
theory_covmat_flag=False,
use_thcovmat_in_fitting=False,
self, theory_covmat_flag=False, use_thcovmat_in_fitting=False
):
"""
Produces the correct covmat to be used in fitting_data_dict according
Expand All @@ -701,10 +660,7 @@ def produce_dataset_inputs_fitting_covmat(

@configparser.explicit_node
def produce_dataset_inputs_sampling_covmat(
self,
sep_mult,
theory_covmat_flag=False,
use_thcovmat_in_sampling=False,
self, sep_mult, theory_covmat_flag=False, use_thcovmat_in_sampling=False
):
"""
Produces the correct covmat to be used in make_replica according
Expand Down Expand Up @@ -760,11 +716,7 @@ def produce_loaded_theory_covmat(
raise ValueError("More than one theory_covmat file in folder tables")
theorypath = output_path / "tables" / generic_path
theory_covmat = pd.read_csv(
theorypath,
index_col=[0, 1, 2],
header=[0, 1, 2],
sep="\t|,",
engine="python",
theorypath, index_col=[0, 1, 2], header=[0, 1, 2], sep="\t|,", engine="python"
).fillna(0)
# change ordering according to exp_covmat (so according to runcard order)
tmp = theory_covmat.droplevel(0, axis=0).droplevel(0, axis=1)
Expand Down Expand Up @@ -877,12 +829,7 @@ def produce_matched_datasets_from_dataspecs(self, dataspecs):
inner_spec_list = inres["dataspecs"] = []
for ispec, spec in enumerate(dataspecs):
# Passing spec by referene
d = ChainMap(
{
"dataset_input": all_names[ispec][k],
},
spec,
)
d = ChainMap({"dataset_input": all_names[ispec][k]}, spec)
inner_spec_list.append(d)
res.append(inres)
res.sort(key=lambda x: (x["process"], x["dataset_name"]))
Expand All @@ -906,12 +853,7 @@ def produce_matched_positivity_from_dataspecs(self, dataspecs):
l = inres["dataspecs"] = []
for ispec, spec in enumerate(dataspecs):
# Passing spec by referene
d = ChainMap(
{
"posdataset": all_names[ispec][k],
},
spec,
)
d = ChainMap({"posdataset": all_names[ispec][k]}, spec)
l.append(d)
res.append(inres)
res.sort(key=lambda x: (x["posdataset_name"]))
Expand Down Expand Up @@ -993,11 +935,7 @@ def parse_use_t0(self, do_use_t0: bool):
return do_use_t0

# TODO: Find a good name for this
def produce_t0set(
self,
t0pdfset=None,
use_t0=False,
):
def produce_t0set(self, t0pdfset=None, use_t0=False):
"""Return the t0set if use_t0 is True and None otherwise. Raises an
error if t0 is requested but no t0set is given.
"""
Expand Down Expand Up @@ -1408,11 +1346,8 @@ def produce_defaults(
level and those inside a ``filter_defaults`` mapping.
"""
from validphys.filters import default_filter_settings_input
if (
q2min is not None
and "q2min" in filter_defaults
and q2min != filter_defaults["q2min"]
):

if q2min is not None and "q2min" in filter_defaults and q2min != filter_defaults["q2min"]:
raise ConfigError("q2min defined multiple times with different values")
if w2min is not None and "w2min" in filter_defaults and w2min != filter_defaults["w2min"]:
raise ConfigError("w2min defined multiple times with different values")
Expand Down Expand Up @@ -1446,15 +1381,10 @@ def produce_defaults(
if maxTau is not None and defaults_loaded:
log.warning("Using maxTau from runcard")
filter_defaults["maxTau"] = maxTau

return filter_defaults

def produce_data(
self,
data_input,
*,
group_name="data",
):
def produce_data(self, data_input, *, group_name="data"):
"""A set of datasets where correlated systematics are taken
into account
"""
Expand All @@ -1466,9 +1396,7 @@ def produce_data(
return DataGroupSpec(name=group_name, datasets=datasets, dsinputs=data_input)

def _parse_data_input_from_(
self,
parse_from_value: (str, type(None)),
additional_context: (dict, type(None)) = None,
self, parse_from_value: (str, type(None)), additional_context: (dict, type(None)) = None
):
"""Function which parses the ``data_input`` from a namespace. Usage
is similar to :py:meth:`self.parse_from_` except this function bridges
Expand Down Expand Up @@ -1588,11 +1516,7 @@ def produce_processed_metadata_group(self, processed_data_grouping, metadata_gro
return processed_data_grouping
return metadata_group

def produce_group_dataset_inputs_by_metadata(
self,
data_input,
processed_metadata_group,
):
def produce_group_dataset_inputs_by_metadata(self, data_input, processed_metadata_group):
"""Take the data and the processed_metadata_group key and attempt
to group the data, returns a list where each element specifies the data_input
for a single group and the group_name
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -13,9 +13,9 @@
'n3lo ad covmat': ['(0, 0, 0, 0)','(1, 0, 0, 0)','(2, 0, 0, 0)','(3, 0, 0, 0)','(4, 0, 0, 0)','(5, 0, 0, 0)','(6, 0, 0, 0)','(7, 0, 0, 0)','(8, 0, 0, 0)','(9, 0, 0, 0)','(10, 0, 0, 0)','(11, 0, 0, 0)','(12, 0, 0, 0)','(13, 0, 0, 0)','(14, 0, 0, 0)','(15, 0, 0, 0)','(16, 0, 0, 0)','(17, 0, 0, 0)','(18, 0, 0, 0)','(19, 0, 0, 0)','(0, 1, 0, 0)','(0, 2, 0, 0)','(0, 3, 0, 0)','(0, 4, 0, 0)','(0, 5, 0, 0)','(0, 6, 0, 0)','(0, 7, 0, 0)','(0, 8, 0, 0)','(0, 9, 0, 0)','(0, 10, 0, 0)','(0, 11, 0, 0)','(0, 12, 0, 0)','(0, 13, 0, 0)','(0, 14, 0, 0)','(0, 15, 0, 0)','(0, 16, 0, 0)','(0, 17, 0, 0)','(0, 18, 0, 0)','(0, 19, 0, 0)','(0, 20, 0, 0)','(0, 21, 0, 0)','(0, 0, 1, 0)','(0, 0, 2, 0)','(0, 0, 3, 0)','(0, 0, 4, 0)','(0, 0, 5, 0)','(0, 0, 6, 0)','(0, 0, 7, 0)','(0, 0, 8, 0)','(0, 0, 9, 0)','(0, 0, 10, 0)','(0, 0, 11, 0)','(0, 0, 12, 0)','(0, 0, 13, 0)','(0, 0, 14, 0)','(0, 0, 15, 0)','(0, 0, 0, 1)','(0, 0, 0, 2)','(0, 0, 0, 3)','(0, 0, 0, 4)','(0, 0, 0, 5)','(0, 0, 0, 6)']
# N3LO full IHOU: Anomalous dimension theory covmat + DIS massive coefficient functions
'n3lo ihou': ['(0, 0, 0, 0)','(1, 0, 0, 0)','(2, 0, 0, 0)','(3, 0, 0, 0)','(4, 0, 0, 0)','(5, 0, 0, 0)','(6, 0, 0, 0)','(7, 0, 0, 0)','(8, 0, 0, 0)','(9, 0, 0, 0)','(10, 0, 0, 0)','(11, 0, 0, 0)','(12, 0, 0, 0)','(13, 0, 0, 0)','(14, 0, 0, 0)','(15, 0, 0, 0)','(16, 0, 0, 0)','(17, 0, 0, 0)','(18, 0, 0, 0)','(19, 0, 0, 0)','(0, 1, 0, 0)','(0, 2, 0, 0)','(0, 3, 0, 0)','(0, 4, 0, 0)','(0, 5, 0, 0)','(0, 6, 0, 0)','(0, 7, 0, 0)','(0, 8, 0, 0)','(0, 9, 0, 0)','(0, 10, 0, 0)','(0, 11, 0, 0)','(0, 12, 0, 0)','(0, 13, 0, 0)','(0, 14, 0, 0)','(0, 15, 0, 0)','(0, 16, 0, 0)','(0, 17, 0, 0)','(0, 18, 0, 0)','(0, 19, 0, 0)','(0, 20, 0, 0)','(0, 21, 0, 0)','(0, 0, 1, 0)','(0, 0, 2, 0)','(0, 0, 3, 0)','(0, 0, 4, 0)','(0, 0, 5, 0)','(0, 0, 6, 0)','(0, 0, 7, 0)','(0, 0, 8, 0)','(0, 0, 9, 0)','(0, 0, 10, 0)','(0, 0, 11, 0)','(0, 0, 12, 0)','(0, 0, 13, 0)','(0, 0, 14, 0)','(0, 0, 15, 0)','(0, 0, 0, 1)','(0, 0, 0, 2)','(0, 0, 0, 3)','(0, 0, 0, 4)','(0, 0, 0, 5)','(0, 0, 0, 6)','(-1, -1)','(1, 1)']
# N3LO full IHOU + 7 point scale variations
# N3LO full IHOU + 7 point scale variations
'n3lo full thcovmat': ['(0, 0, 0, 0)','(1, 0, 0, 0)','(2, 0, 0, 0)','(3, 0, 0, 0)','(4, 0, 0, 0)','(5, 0, 0, 0)','(6, 0, 0, 0)','(7, 0, 0, 0)','(8, 0, 0, 0)','(9, 0, 0, 0)','(10, 0, 0, 0)','(11, 0, 0, 0)','(12, 0, 0, 0)','(13, 0, 0, 0)','(14, 0, 0, 0)','(15, 0, 0, 0)','(16, 0, 0, 0)','(17, 0, 0, 0)','(18, 0, 0, 0)','(19, 0, 0, 0)','(0, 1, 0, 0)','(0, 2, 0, 0)','(0, 3, 0, 0)','(0, 4, 0, 0)','(0, 5, 0, 0)','(0, 6, 0, 0)','(0, 7, 0, 0)','(0, 8, 0, 0)','(0, 9, 0, 0)','(0, 10, 0, 0)','(0, 11, 0, 0)','(0, 12, 0, 0)','(0, 13, 0, 0)','(0, 14, 0, 0)','(0, 15, 0, 0)','(0, 16, 0, 0)','(0, 17, 0, 0)','(0, 18, 0, 0)','(0, 19, 0, 0)','(0, 20, 0, 0)','(0, 21, 0, 0)','(0, 0, 1, 0)','(0, 0, 2, 0)','(0, 0, 3, 0)','(0, 0, 4, 0)','(0, 0, 5, 0)','(0, 0, 6, 0)','(0, 0, 7, 0)','(0, 0, 8, 0)','(0, 0, 9, 0)','(0, 0, 10, 0)','(0, 0, 11, 0)','(0, 0, 12, 0)','(0, 0, 13, 0)','(0, 0, 14, 0)','(0, 0, 15, 0)','(0, 0, 0, 1)','(0, 0, 0, 2)','(0, 0, 0, 3)','(0, 0, 0, 4)','(0, 0, 0, 5)','(0, 0, 0, 6)','(2, 1)', '(0.5, 1)', '(1, 2)', '(1, 0.5)', '(2, 2)', '(0.5, 0.5)','(-1, -1)','(1, 1)']
# N3LO full IHOU + 3 point scale variations for datasets with no N3LO correcttions
# N3LO full IHOU + 3 point scale variations for datasets with no N3LO correcttions
'n3lo 3pt missing': ['(0, 0, 0, 0)','(1, 0, 0, 0)','(2, 0, 0, 0)','(3, 0, 0, 0)','(4, 0, 0, 0)','(5, 0, 0, 0)','(6, 0, 0, 0)','(7, 0, 0, 0)','(8, 0, 0, 0)','(9, 0, 0, 0)','(10, 0, 0, 0)','(11, 0, 0, 0)','(12, 0, 0, 0)','(13, 0, 0, 0)','(14, 0, 0, 0)','(15, 0, 0, 0)','(16, 0, 0, 0)','(17, 0, 0, 0)','(18, 0, 0, 0)','(19, 0, 0, 0)','(0, 1, 0, 0)','(0, 2, 0, 0)','(0, 3, 0, 0)','(0, 4, 0, 0)','(0, 5, 0, 0)','(0, 6, 0, 0)','(0, 7, 0, 0)','(0, 8, 0, 0)','(0, 9, 0, 0)','(0, 10, 0, 0)','(0, 11, 0, 0)','(0, 12, 0, 0)','(0, 13, 0, 0)','(0, 14, 0, 0)','(0, 15, 0, 0)','(0, 16, 0, 0)','(0, 17, 0, 0)','(0, 18, 0, 0)','(0, 19, 0, 0)','(0, 20, 0, 0)','(0, 21, 0, 0)','(0, 0, 1, 0)','(0, 0, 2, 0)','(0, 0, 3, 0)','(0, 0, 4, 0)','(0, 0, 5, 0)','(0, 0, 6, 0)','(0, 0, 7, 0)','(0, 0, 8, 0)','(0, 0, 9, 0)','(0, 0, 10, 0)','(0, 0, 11, 0)','(0, 0, 12, 0)','(0, 0, 13, 0)','(0, 0, 14, 0)','(0, 0, 15, 0)','(0, 0, 0, 1)','(0, 0, 0, 2)','(0, 0, 0, 3)','(0, 0, 0, 4)','(0, 0, 0, 5)','(0, 0, 0, 6)', '(1, 0.5 missing)', '(1, 2 missing)','(-1, -1)','(1, 1)']
# N3LO full IHOU + 3 point scale variations for hadronic dasasets
'n3lo 3pt hadronic': ['(0, 0, 0, 0)','(1, 0, 0, 0)','(2, 0, 0, 0)','(3, 0, 0, 0)','(4, 0, 0, 0)','(5, 0, 0, 0)','(6, 0, 0, 0)','(7, 0, 0, 0)','(8, 0, 0, 0)','(9, 0, 0, 0)','(10, 0, 0, 0)','(11, 0, 0, 0)','(12, 0, 0, 0)','(13, 0, 0, 0)','(14, 0, 0, 0)','(15, 0, 0, 0)','(16, 0, 0, 0)','(17, 0, 0, 0)','(18, 0, 0, 0)','(19, 0, 0, 0)','(0, 1, 0, 0)','(0, 2, 0, 0)','(0, 3, 0, 0)','(0, 4, 0, 0)','(0, 5, 0, 0)','(0, 6, 0, 0)','(0, 7, 0, 0)','(0, 8, 0, 0)','(0, 9, 0, 0)','(0, 10, 0, 0)','(0, 11, 0, 0)','(0, 12, 0, 0)','(0, 13, 0, 0)','(0, 14, 0, 0)','(0, 15, 0, 0)','(0, 16, 0, 0)','(0, 17, 0, 0)','(0, 18, 0, 0)','(0, 19, 0, 0)','(0, 20, 0, 0)','(0, 21, 0, 0)','(0, 0, 1, 0)','(0, 0, 2, 0)','(0, 0, 3, 0)','(0, 0, 4, 0)','(0, 0, 5, 0)','(0, 0, 6, 0)','(0, 0, 7, 0)','(0, 0, 8, 0)','(0, 0, 9, 0)','(0, 0, 10, 0)','(0, 0, 11, 0)','(0, 0, 12, 0)','(0, 0, 13, 0)','(0, 0, 14, 0)','(0, 0, 15, 0)','(0, 0, 0, 1)','(0, 0, 0, 2)','(0, 0, 0, 3)','(0, 0, 0, 4)','(0, 0, 0, 5)','(0, 0, 0, 6)', '(1, 0.5 hadronic)', '(1, 2 hadronic)','(-1, -1)','(1, 1)']
Expand Down
Loading

0 comments on commit 99f5f63

Please sign in to comment.