-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathio_utils.py
162 lines (137 loc) · 5.33 KB
/
io_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
"""
Copyright (C) 2018 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license
(https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
Author: Zhaoyang Lv
Partially refer to:
=============================================================================
The I/O script to save and load the data coming with the MPI-Sintel low-level
computer vision benchmark.
CHANGELOG:
v1.0 (2015/02/03): First release
Copyright (c) 2015 Jonas Wulff
Max Planck Institute for Intelligent Systems, Tuebingen, Germany
"""
# Requirements: Numpy as PIL/Pillow
import os
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import matplotlib.colors as color
# Check for endianness, based on Daniel Scharstein's optical flow code.
# Using little-endian architecture, these two should be equal.
TAG_FLOAT = 202021.25
TAG_CHAR = 'PIEH'
def flow_visualize(flow, max_range = 1e3):
du = flow[0]
dv = flow[1]
[h,w] = du.shape
max_flow = min(max_range, np.max(np.sqrt(du * du + dv * dv)))
img = np.ones((h, w, 3), dtype=np.float64)
# angle layer
img[:, :, 0] = (np.arctan2(dv, du) / (2 * np.pi) + 1) % 1.0
# magnitude layer, normalized to 1
img[:, :, 1] = np.sqrt(du * du + dv * dv) / (max_flow + 1e-8)
# phase layer
#img[:, :, 2] = valid
# convert to rgb
img = color.hsv_to_rgb(img)
# remove invalid point
img[:, :, 0] = img[:, :, 0]
img[:, :, 1] = img[:, :, 1]
img[:, :, 2] = img[:, :, 2]
return img
def flow_read_from_flo(filename):
""" Read optical flow from file, return (U,V) tuple.
Original code by Deqing Sun, adapted from Daniel Scharstein.
"""
f = open(filename,'rb')
check = np.fromfile(f,dtype=np.float32,count=1)[0]
assert check == TAG_FLOAT, ' flow_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? '.format(TAG_FLOAT,check)
width = np.fromfile(f,dtype=np.int32,count=1)[0]
height = np.fromfile(f,dtype=np.int32,count=1)[0]
size = width*height
assert width > 0 and height > 0 and size > 1 and size < 100000000, ' flow_read:: Wrong input size (width = {0}, height = {1}).'.format(width,height)
tmp = np.fromfile(f,dtype=np.float32,count=-1).reshape((height,width*2))
u = tmp[:,np.arange(width)*2]
v = tmp[:,np.arange(width)*2 + 1]
return u,v
def flow_write(filename,uv,v=None):
""" Write optical flow to file.
If v is None, uv is assumed to contain both u and v channels,
stacked in depth.
Original code by Deqing Sun, adapted from Daniel Scharstein.
"""
nBands = 2
if v is None:
assert(uv.ndim == 3)
assert(uv.shape[2] == 2)
u = uv[:,:,0]
v = uv[:,:,1]
else:
u = uv
assert(u.shape == v.shape)
height,width = u.shape
f = open(filename,'wb')
# write the header
f.write(TAG_CHAR)
np.array(width).astype(np.int32).tofile(f)
np.array(height).astype(np.int32).tofile(f)
# arrange into matrix form
tmp = np.zeros((height, width*nBands))
tmp[:,np.arange(width)*2] = u
tmp[:,np.arange(width)*2 + 1] = v
tmp.astype(np.float32).tofile(f)
f.close()
def depth_read(filename):
""" Read depth data from file, return as numpy array. """
f = open(filename,'rb')
check = np.fromfile(f,dtype=np.float32,count=1)[0]
assert check == TAG_FLOAT, ' depth_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? '.format(TAG_FLOAT,check)
width = np.fromfile(f,dtype=np.int32,count=1)[0]
height = np.fromfile(f,dtype=np.int32,count=1)[0]
size = width*height
assert width > 0 and height > 0 and size > 1 and size < 100000000, ' depth_read:: Wrong input size (width = {0}, height = {1}).'.format(width,height)
depth = np.fromfile(f,dtype=np.float32,count=-1).reshape((height,width))
return depth
def depth_write(filename, depth):
""" Write depth to file. """
height,width = depth.shape[:2]
f = open(filename,'wb')
# write the header
f.write(TAG_CHAR)
np.array(width).astype(np.int32).tofile(f)
np.array(height).astype(np.int32).tofile(f)
depth.astype(np.float32).tofile(f)
f.close()
def cam_read(filename):
""" Read camera data, return (M,N) tuple.
M is the intrinsic matrix, N is the extrinsic matrix, so that
x = M*N*X,
with x being a point in homogeneous image pixel coordinates, X being a
point in homogeneous world coordinates.
"""
f = open(filename,'rb')
check = np.fromfile(f,dtype=np.float32,count=1)[0]
assert check == TAG_FLOAT, ' cam_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? '.format(TAG_FLOAT,check)
M = np.fromfile(f,dtype='float64',count=9).reshape((3,3))
N = np.fromfile(f,dtype='float64',count=12).reshape((3,4))
return M,N
def cam_write(filename, M, N):
""" Write intrinsic matrix M and extrinsic matrix N to file. """
f = open(filename,'wb')
# write the header
f.write(TAG_CHAR)
M.astype('float64').tofile(f)
N.astype('float64').tofile(f)
f.close()
def image_with_mask(image, mask):
""" return the masked image visualization
"""
H, W = mask.shape
color_mask = image.copy()
color_mask[mask>0] = [125, 0, 0]
hsv_mask = color.rgb_to_hsv(color_mask)
I_hsv = color.rgb_to_hsv(image)
I_hsv[..., 0] = hsv_mask[..., 0]
I_hsv[..., 1] = hsv_mask[..., 1] * 0.6
return color.hsv_to_rgb(I_hsv)