-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathpose_refine.py
135 lines (108 loc) · 4.09 KB
/
pose_refine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
"""
Copyright (C) 2018 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license
(https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
Author: Zhaoyang Lv
"""
import os, sys, time
import numpy as np
sys.path.append('external_packages/flow2pose/build')
from pyFlow2Pose import pyFlow2Pose
from scipy.misc import imsave
from scipy import ndimage
from skimage.morphology import dilation, square, erosion
def forward_backward_consistency(F_f, F_b, threshold):
""" get the mask that is foreward-backward consistent
"""
u_b = F_b[0]
v_b = F_b[1]
u_f = F_f[0]
v_f = F_f[1]
[H,W] = np.shape(u_b)
[x,y] = np.meshgrid(np.arange(0,W),np.arange(0,H))
x2 = x + u_b
y2 = y + v_b
# Out of boundary
B = (x2 > W-1) | (y2 > H-1) | (x2 < 0) | (y2 <0)
u = ndimage.map_coordinates(u_f, [y2, x2])
v = ndimage.map_coordinates(v_f, [y2, x2])
u_inv = u
v_inv = v
dif = np.zeros((H, W), dtype=np.float64)
dif = ((u_b + u_inv)**2 + (v_b + v_inv)**2)**0.5
mask = (dif < threshold)
mask = mask | B
return mask
def depth2pointcloud_batch(K0, depth0):
""" Transfer a pair of depth images into point cloud
"""
B, _, H, W = depth0.shape
inv_K0 = np.linalg.inv(K0)
u_mat = np.repeat(np.array(range(0, W)).reshape(1, W), H, axis=0)
v_mat = np.repeat(np.array(range(0, H)).reshape(H, 1), W, axis=1)
uvd_map_0 = np.concatenate((depth0 * u_mat, depth0 * v_mat, depth0), axis=1)
vertex_map_0 = uvd_map_0.copy()
for idx in range(B):
vertex_map_0[idx] = np.tensordot(inv_K0[idx], uvd_map_0[idx], axes=1)
return vertex_map_0
class PoseRefine():
def __init__(self):
self.f2p = pyFlow2Pose()
def run(self, f_flow, b_flow, V0, V1, bg0, bg1,
pose_init=None, max_depth=None):
"""
:param f_flow: forward flow vector
:param b_flow: backward flow vector
:param V0: vertex map for frame0
:param V1: vertex map for frame1
:param bg0: background for frame0
:param bg1: background for frame1
:param pose_init: initial pose
"""
# the threshold is hard-coded
m = forward_backward_consistency(f_flow, b_flow, 0.75)
flow = f_flow.transpose((1,2,0))
bg0 = dilation(bg0, square(5))
bg1 = dilation(bg1, square(5))
occlusion = erosion(m.astype(int), square(10))
if max_depth is not None:
invalid = (V0[:,:,2] < max_depth) & (V0[:,:,2] > 1e-4)
occlusion *= invalid.astype(int)
if pose_init is None:
pose_init = np.zeros((3,4)).astype(np.float32)
pose_init[:, :3] = np.eye(3)
## Becareful about the type of input:
# V0: double
# V1: double
# flow: float32
# bg0: int
# bg1: int
# occlusion: int
# pose_init: float32
pose_refined = self.f2p.calculate_transform(
V0.astype(np.float64), V1.astype(np.float64), flow.astype(np.float32),
bg0.astype(int), bg1.astype(int), occlusion.astype(int),
pose_init.astype(np.float32))
return pose_refined
def run_batch(self, vertices0, vertices1, rigidity0, rigidity1,
forward_flow, backward_flow, max_depth=None):
""" Run the pose refine algorithm in batches
:param the first image point cloud (x0, y0, z0)
:param the second image point cloud (x1, y1, z1)
:param the first frame rigidity mask
:param the second frame rigidity mask
:param forward optical flow
:param backward optical flow
:param maximum depth range
"""
# V0_batch = depth2pointcloud_batch(K0, D0)
# V1_batch = depth2pointcloud_batch(K1, D1)
B = vertices0.shape[0]
est_Rt44 = np.zeros((B, 4, 4))
for idx in range(B):
V0 = vertices0[idx].transpose((1,2,0))
V1 = vertices1[idx].transpose((1,2,0))
est_Rt44[idx] = self.run(forward_flow[idx],
backward_flow[idx], V0, V1,
rigidity0[idx], rigidity1[idx], max_depth=None)
return est_Rt44