Establish a general function description protocol, which can realize a comprehensive description of the input, output and side effects of an target function through an Python object. Provide a unified abstraction for parameter checking, interface generation and other functions in applications such as oneFace.
- Parse function to get a description object.
- Mark function's inputs and outputs.
- Mark function's side effects.
- Generate checker(guard) for function.
- Check inputs and outputs's type.
- Check inputs and outputs's range.
- Check side-effect.
- Serialization & Deserialization of the description.
- Convert description object to JSON string.
- Parse JSON string to get description object.
- Utility functions for edit function's signature.
- Function guard can be used for checking inputs, outputs and side effects.
- TODO Support docstring.
- Parse docstring to get description object.
- Convert description object to docstring.
"Function description" is a Python object that contains descriptive information about a Python function, such as input parameters, output values, and side effects of the function. The description of the inputs and outputs includes their types, range of values, and default values.
The Description
can be generated by parsing a function annotated with type annotations and decorated with the mark decorator,
or it can be manually created. After obtaining the Description
,
we can use it to generate a Guard
object to check the types, ranges, or side effects of the inputs and outputs of the function at runtime.
Additionally, the information in the Description
can be used by downstream tools, such as oneFace, to automatically generate interfaces, including CLI, GUI, and WebUI
Parse a normal type hinted function:
# test.py
from funcdesc import parse_func
def add(a: int, b: int = 0) -> int:
return a + b
desc = parse_func(add)
print(desc)
$ python test.py
<Description
inputs=[<Value type=<class 'int'> range=None default=NotDef>, <Value type=<class 'int'> range=None default=0>]
outputs=[<Value type=<class 'int'> range=None default=NotDef>]
side_effects=[]
>
funcdesc
provides two ways to annotate inputs and outputs: 1) using decorators, and 2) using the "Val" object in type hints.
For example:
from funcdesc import mark_input, mark_output
@mark_input(0, type=int, range=[0, 10])
@mark_input(1, type=int, range=[0, 10])
@mark_output(0, type=int, range=[0, 20])
def add(a, b) -> int:
return a + b
Is same to:
from funcdesc import Val
def add(a: Val[int, [0, 10]], b: Val[int, [0, 10]]) -> Val[int, [0, 20]]:
return a + b
The make_guard
decorator can convert a marked function into a Guard
object.
You can call the Guard
just like the original function, and it will check the inputs, outputs,
and side effects of the function based on the marked information.
For example:
from funcdesc import mark_input, mark_output, make_guard
@make_guard
@mark_input('a', range=[0, 10])
@mark_input('b', range=[0, 10])
@mark_output(0, name="sum", range=[0, 20])
def add(a: int, b: int) -> int:
return a + b
print(add(5, 5)) # will print "10"
print(add(20, 20)) # will raise an CheckError
$ python tmp/test.py
10
Traceback (most recent call last):
File ".\tmp\test2.py", line 11, in <module>
print(add(20, 20)) # will raise an CheckError
File "C:\Users\Nangu\Desktop\funcdesc\funcdesc\guard.py", line 46, in __call__
self._check_inputs(pass_in, errors)
File "C:\Users\Nangu\Desktop\funcdesc\funcdesc\guard.py", line 58, in _check_inputs
raise CheckError(errors)
funcdesc.guard.CheckError: [ValueError('Value 20 is not in a valid range([0, 10]).'), ValueError('Value 20 is not in a valid range([0, 10]).')]
funcdesc
provides some built-in types to facilitate the use of the guard
.
OneOf
and SubSet
.
from funcdesc import mark_input, make_guard
from funcdesc.types import SubSet, OneOf
member_list = ["Tom", "Jerry", "Jack"]
food_list = ["apple", "dumpling", "noodles", "banana"]
@make_guard
@mark_input(0, type=OneOf, range=member_list)
@mark_input(1, type=SubSet, range=food_list)
def eat(person, foods):
print(f"{person} eats {' '.join(foods)}")
eat("Tom", ["apple", "dumpling"])
eat("Jack", ["banana", "noodles"])
eat("Jared", ["apple"]) # "Jared" not in member_list, will raise exception
eat("Tom", ["fish"]) # "fish" not in foods_list, will raise exception
InputPath
and OutputPath
from funcdesc.types import InputPath, OutputPath
from funcdesc import make_guard
@make_guard
def copy_file(in_path: InputPath, out_path: OutputPath):
with open(in_path) as fi, open(out_path, 'w') as fo:
fo.write(fi.read())
copy_file("file_exist", "another_file")
copy_file("file_not_exist", "another_file") # will raise exception
funcdesc also provides some utility functions for modifying function signature, in order to annotate functions with variable-length parameter types.
Change the parameters signature:
import inspect
from funcdesc.mark import sign_parameters
@sign_parameters("a", ("b", int), ("c", int, 10))
def f(*args) -> int:
return sum(args)
# The signature of `f` is changed
sig = inspect.signature(f)
assert len(sig.parameters) == 3
assert sig.parameters["a"].annotation is inspect._empty
assert sig.parameters["b"].annotation is int
assert sig.parameters["c"].default == 10
Change the return signature:
import inspect
from funcdesc.mark import sign_return
@sign_return(str)
def f(a: int):
return str(a)
# The signature of `f` is changed
sig = inspect.signature(f)
assert sig.return_annotation is str
Copy the signature of a function to another function:
import inspect
from funcdesc.mark import copy_signature
def f(a: int) -> str:
return str(a)
@copy_signature(f)
def g(b):
return str(b)
# The signature of `g` is copied from `f`
sig = inspect.signature(g)
assert sig.parameters["a"].annotation is int
assert sig.return_annotation is str
Generate a Signature
object from Description
object:
from funcdesc import parse_func
def f(a: int) -> str:
return str(a)
desc = parse_func(f)
sig = desc.compose_signature()
print(sig) # will print: (a: int) -> str
- oneFace: Generating interfaces(CLI, Qt GUI, Dash web app) from a Python function or a command program.