-
Notifications
You must be signed in to change notification settings - Fork 641
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
tutorial for extraction efficiency of a collection of dipoles in a di…
…sc in cylindrical coordinates
- Loading branch information
Showing
2 changed files
with
332 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,327 @@ | ||
"""Computes the extraction efficiency of a collection of dipoles in a disc. | ||
tutorial reference: https://meep.readthedocs.io/en/latest/Python_Tutorials/Near_to_Far_Field_Spectra/#extraction-efficiency-of-a-disc-in-cylindrical-coordinates | ||
""" | ||
|
||
import math | ||
from typing import Tuple | ||
|
||
import matplotlib | ||
import meep as mp | ||
import numpy as np | ||
|
||
matplotlib.use("agg") | ||
import matplotlib.pyplot as plt | ||
|
||
|
||
N_DISC = 2.4 # refractive index of disc | ||
DISC_RADIUS_UM = 1.2 # radius of disc | ||
WAVELENGTH_UM = 1.0 # wavelength (in vacuum) | ||
|
||
# radius of quarter circle for computing flux in far field | ||
FARFIELD_RADIUS_UM = 1000 * WAVELENGTH_UM | ||
|
||
|
||
def plot_radiation_pattern_polar(theta_rad: np.ndarray, radial_flux: np.ndarray): | ||
"""Plots the radiation pattern in polar coordinates. | ||
Args: | ||
theta_rad: angles of the radiation pattern. The angles increase clockwise | ||
with zero at the pole (+z direction) and π/2 at the equator (+r | ||
direction). | ||
radial_flux: radial flux of the far fields in polar coordinates. | ||
""" | ||
fig, ax = plt.subplots(subplot_kw={"projection": "polar"}, figsize=(6, 6)) | ||
ax.plot( | ||
theta_rad, | ||
radial_flux, | ||
"b-", | ||
) | ||
ax.set_theta_direction(-1) | ||
ax.set_theta_offset(0.5 * math.pi) | ||
ax.set_thetalim(0, 0.5 * math.pi) | ||
ax.grid(True) | ||
ax.set_rlabel_position(22) | ||
ax.set_ylabel("radial flux (a.u.)") | ||
ax.set_title("radiation pattern in polar coordinates") | ||
|
||
if mp.am_master(): | ||
fig.savefig( | ||
"disc_radiation_pattern_polar.png", | ||
dpi=150, | ||
bbox_inches="tight", | ||
) | ||
|
||
|
||
def plot_radiation_pattern_3d(theta_rad: np.ndarray, radial_flux: np.ndarray): | ||
"""Plots the radiation pattern in 3d Cartesian coordinates. | ||
Args: | ||
theta_rad: angles of the radiation pattern. | ||
radial_flux: radial flux of the far fields in polar coordinates. | ||
""" | ||
phis = np.linspace(0, 2 * np.pi, num_angles) | ||
|
||
xs = np.zeros((len(theta_rad), len(phis))) | ||
ys = np.zeros((len(theta_rad), len(phis))) | ||
zs = np.zeros((len(theta_rad), len(phis))) | ||
|
||
for i, theta in enumerate(theta_rad): | ||
for j, phi in enumerate(phis): | ||
xs[i, j] = radial_flux[i] * np.sin(theta) * np.cos(phi) | ||
ys[i, j] = radial_flux[i] * np.sin(theta) * np.sin(phi) | ||
zs[i, j] = radial_flux[i] * np.cos(theta) | ||
|
||
fig, ax = plt.subplots(subplot_kw={"projection": "3d"}, figsize=(6, 6)) | ||
ax.plot_surface(xs, ys, zs, cmap="inferno") | ||
ax.set_title("radiation pattern in 3d") | ||
ax.set_box_aspect((np.amax(xs), np.amax(ys), np.amax(zs))) | ||
ax.set_zlabel("radial flux (a.u.)") | ||
ax.set(xticklabels=[], yticklabels=[]) | ||
|
||
if mp.am_master(): | ||
fig.savefig( | ||
"disc_radiation_pattern_3d.png", | ||
dpi=150, | ||
bbox_inches="tight", | ||
) | ||
|
||
|
||
def radiation_pattern( | ||
theta_rad: np.ndarray, sim: mp.Simulation, n2f_mon: mp.DftNear2Far | ||
) -> np.ndarray: | ||
"""Computes the radiation pattern from the near fields. | ||
Args: | ||
theta_rad: angles of the radiation pattern. | ||
sim: a `Simulation` object. | ||
n2f_mon: a `DftNear2Far` object returned by `Simulation.add_near2far`. | ||
""" | ||
e_field = np.zeros((theta_rad.shape[0], 3), dtype=np.complex128) | ||
h_field = np.zeros((theta_rad.shape[0], 3), dtype=np.complex128) | ||
for n in range(num_angles): | ||
far_field = sim.get_farfield( | ||
n2f_mon, | ||
mp.Vector3( | ||
FARFIELD_RADIUS_UM * math.sin(theta_rad[n]), | ||
0, | ||
FARFIELD_RADIUS_UM * math.cos(theta_rad[n]), | ||
), | ||
) | ||
e_field[n, :] = [np.conj(far_field[j]) for j in range(3)] | ||
h_field[n, :] = [far_field[j + 3] for j in range(3)] | ||
|
||
flux_r = np.real(e_field[:, 1] * h_field[:, 2] - e_field[:, 2] * h_field[:, 1]) | ||
flux_z = np.real(e_field[:, 0] * h_field[:, 1] - e_field[:, 1] * h_field[:, 0]) | ||
flux_rz = np.sqrt(np.square(flux_r) + np.square(flux_z)) | ||
|
||
return flux_rz | ||
|
||
|
||
def radiation_pattern_flux(theta_rad: np.ndarray, radial_flux: np.ndarray) -> float: | ||
"""Computes the total flux from the radiation pattern. | ||
Based on integrating the radiation pattern over solid angles spanned by | ||
polar angles in the range of [0, π/2]. | ||
Args: | ||
theta_rad: angles of the radiation pattern. | ||
radial_flux: radial flux of the far fields in polar coordinates. | ||
""" | ||
dphi = 2 * math.pi | ||
dtheta_rad = theta_rad[1] - theta_rad[0] | ||
|
||
total_flux = ( | ||
np.sum(radial_flux * np.sin(theta_rad)) | ||
* FARFIELD_RADIUS_UM**2 | ||
* dtheta_rad | ||
* dphi | ||
) | ||
|
||
return total_flux | ||
|
||
|
||
def dipole_in_disc( | ||
t_disc_um: float, h_disc: float, rpos: float, m: int, theta_rad: np.ndarray | ||
) -> Tuple[float, np.ndarray]: | ||
"""Computes the total flux and radiation pattern of a dipole in a disc. | ||
Args: | ||
t_disc_um: thickness of disc. | ||
h_disc: height of dipole above ground plane as fraction of t_disc_um. | ||
rpos: radial position of dipole. | ||
m: angular φ dependence of the fields exp(imφ). | ||
theta_rad: angles of the radiation pattern. | ||
Returns: | ||
A 2-tuple of the total flux and the radiation pattern. | ||
""" | ||
resolution = 50 # pixels/μm | ||
|
||
t_pml_um = 0.5 # thickness of PML | ||
t_air_um = 1.0 # thickness of air padding above disc | ||
length_r_um = 5.0 # length of cell in r | ||
|
||
frequency = 1 / WAVELENGTH_UM # center frequency of source/monitor | ||
|
||
# field decay threshold for runtime termination criteria | ||
decay_tol = 1e-6 | ||
|
||
size_r = length_r_um + t_pml_um | ||
size_z = t_disc_um + t_air_um + t_pml_um | ||
cell_size = mp.Vector3(size_r, 0, size_z) | ||
|
||
boundary_layers = [ | ||
mp.PML(t_pml_um, direction=mp.R), | ||
mp.PML(t_pml_um, direction=mp.Z, side=mp.High), | ||
] | ||
|
||
# An Er source at r=0 needs to be slighty offset. | ||
# https://github.com/NanoComp/meep/issues/2704 | ||
if rpos == 0: | ||
rpos = 1.5 / resolution | ||
|
||
src_cmpt = mp.Er | ||
src_pt = mp.Vector3(rpos, 0, -0.5 * size_z + h_disc * t_disc_um) | ||
sources = [ | ||
mp.Source( | ||
src=mp.GaussianSource(frequency, fwidth=0.1 * frequency), | ||
component=src_cmpt, | ||
center=src_pt, | ||
) | ||
] | ||
|
||
geometry = [ | ||
mp.Block( | ||
material=mp.Medium(index=N_DISC), | ||
center=mp.Vector3(0.5 * DISC_RADIUS_UM, 0, -0.5 * size_z + 0.5 * t_disc_um), | ||
size=mp.Vector3(DISC_RADIUS_UM, mp.inf, t_disc_um), | ||
) | ||
] | ||
|
||
sim = mp.Simulation( | ||
resolution=resolution, | ||
cell_size=cell_size, | ||
dimensions=mp.CYLINDRICAL, | ||
m=m, | ||
boundary_layers=boundary_layers, | ||
sources=sources, | ||
geometry=geometry, | ||
) | ||
|
||
n2f_mon = sim.add_near2far( | ||
frequency, | ||
0, | ||
1, | ||
mp.FluxRegion( | ||
center=mp.Vector3(0.5 * length_r_um, 0, 0.5 * size_z - t_pml_um), | ||
size=mp.Vector3(length_r_um, 0, 0), | ||
), | ||
mp.FluxRegion( | ||
center=mp.Vector3( | ||
length_r_um, 0, 0.5 * size_z - t_pml_um - 0.5 * (t_air_um + t_disc_um) | ||
), | ||
size=mp.Vector3(0, 0, t_air_um + t_disc_um), | ||
), | ||
) | ||
|
||
sim.run( | ||
mp.dft_ldos(frequency, 0, 1), | ||
until_after_sources=mp.stop_when_fields_decayed( | ||
50, | ||
src_cmpt, | ||
src_pt, | ||
decay_tol, | ||
), | ||
) | ||
|
||
delta_vol = 2 * np.pi * rpos / (resolution**2) | ||
dipole_flux = -np.real(sim.ldos_Fdata[0] * np.conj(sim.ldos_Jdata[0])) * delta_vol | ||
|
||
dipole_radiation_pattern = radiation_pattern(theta_rad, sim, n2f_mon) | ||
|
||
return dipole_flux, dipole_radiation_pattern | ||
|
||
|
||
if __name__ == "__main__": | ||
disc_thickness = 0.7 * WAVELENGTH_UM / N_DISC | ||
dipole_height = 0.5 | ||
num_dipoles = 11 | ||
dipole_rpos = np.linspace(0, DISC_RADIUS_UM, num_dipoles) | ||
|
||
delta_rpos = dipole_rpos[2] - dipole_rpos[1] | ||
|
||
# number of angular grid points in [0, π/2] | ||
num_angles = 100 | ||
|
||
# grid of polar angles for computing radiated flux in far field | ||
theta_rad = np.linspace(0, 0.5 * math.pi, num_angles) | ||
|
||
# r = 0 source requires a single simulation with m = ±1. | ||
m = -1 | ||
dipole_flux, dipole_radiation_pattern = dipole_in_disc( | ||
disc_thickness, dipole_height, dipole_rpos[0], m, theta_rad | ||
) | ||
|
||
flux_total = dipole_flux * dipole_rpos[0] * delta_rpos | ||
radiation_pattern_total = dipole_radiation_pattern * dipole_rpos[0] * delta_rpos | ||
|
||
print( | ||
f"dipole:, {dipole_rpos[0]:.4f}, " | ||
f"{radiation_pattern_flux(theta_rad, dipole_radiation_pattern):.6f}" | ||
) | ||
|
||
# r > 0 source requires Fourier-series expansion of φ. | ||
flux_tol = 1e-3 # threshold flux to determine when to truncate expansion | ||
for rpos in dipole_rpos[1:]: | ||
dipole_flux_total = 0 | ||
dipole_radiation_pattern_total = np.zeros((num_angles,)) | ||
dipole_radiation_pattern_flux_max = 0 | ||
m = 0 | ||
while True: | ||
dipole_flux, dipole_radiation_pattern = dipole_in_disc( | ||
disc_thickness, dipole_height, rpos, m, theta_rad | ||
) | ||
dipole_flux_total += dipole_flux if m == 0 else 2 * dipole_flux | ||
dipole_radiation_pattern_total += ( | ||
dipole_radiation_pattern if m == 0 else 2 * dipole_radiation_pattern | ||
) | ||
|
||
dipole_radiation_pattern_flux = radiation_pattern_flux( | ||
theta_rad, dipole_radiation_pattern | ||
) | ||
if dipole_radiation_pattern_flux > dipole_radiation_pattern_flux_max: | ||
dipole_radiation_pattern_flux_max = dipole_radiation_pattern_flux | ||
|
||
if m > 0 and ( | ||
(dipole_radiation_pattern_flux / dipole_radiation_pattern_flux_max) | ||
< flux_tol | ||
): | ||
break | ||
|
||
print( | ||
f"dipole-m:, {rpos:.4f}, {m}, " f"{dipole_radiation_pattern_flux:.6f}" | ||
) | ||
m += 1 | ||
|
||
scale_factor = 1 / (2 * (rpos / dipole_rpos[0]) ** 2) | ||
flux_total += dipole_flux_total * scale_factor * rpos * delta_rpos | ||
radiation_pattern_total += ( | ||
dipole_radiation_pattern_total * scale_factor * rpos * delta_rpos | ||
) | ||
|
||
dipole_radiation_pattern_total_flux = radiation_pattern_flux( | ||
theta_rad, dipole_radiation_pattern_total | ||
) | ||
print( | ||
f"dipole:, {rpos:.4f}, {m}, " f"{dipole_radiation_pattern_total_flux:.6f}" | ||
) | ||
|
||
radiation_pattern_total_flux = radiation_pattern_flux( | ||
theta_rad, radiation_pattern_total | ||
) | ||
extraction_efficiency = radiation_pattern_total_flux / flux_total | ||
print(f"exteff:, {extraction_efficiency:.6f}") | ||
|
||
plot_radiation_pattern_polar(radiation_pattern_total * FARFIELD_RADIUS_UM**2) | ||
plot_radiation_pattern_3d(radiation_pattern_total * FARFIELD_RADIUS_UM**2) |