Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Yee grid gradients #1285

Merged
merged 24 commits into from
Aug 5, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions python/adjoint/filter_source.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,12 +66,12 @@ def nuttall_dtft(self,f,f0):
a = [0.355768, 0.4873960, 0.144232, 0.012604]
return self.cos_window_fd(a,f,f0)
def dtft(self,y,f):
return np.matmul(np.exp(1j*2*np.pi*f[:,np.newaxis]*np.arange(y.size)*self.dt), y)
return np.matmul(np.exp(1j*2*np.pi*f[:,np.newaxis]*np.arange(y.size)*self.dt), y)*self.dt/np.sqrt(2*np.pi)

def __call__(self,t):
if t > self.T:
return 0
vec = self.nuttall(t,self.center_frequencies)
vec = self.nuttall(t,self.center_frequencies) / (self.dt/np.sqrt(2*np.pi)) # compensate for meep dtft
return np.inner(vec,self.nodes)

def func(self):
Expand Down
2 changes: 1 addition & 1 deletion python/adjoint/filters.py
Original file line number Diff line number Diff line change
Expand Up @@ -279,7 +279,7 @@ def gaussian_filter(x,sigma,Lx,Ly,resolution,symmetries=[]):
kernel = kernel / np.sum(kernel.flatten()) # Normalize the filter

# Filter the response
y = mpa.simple_2d_filter(x,kernel,Lx,Ly,resolution,symmetries)
y = simple_2d_filter(x,kernel,Lx,Ly,resolution,symmetries)

return y

Expand Down
40 changes: 27 additions & 13 deletions python/adjoint/objective.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,17 +38,20 @@ def __init__(self,sim,volume,mode,forward=True,kpoint_func=None,**kwargs):

def register_monitors(self,frequencies):
self.frequencies = np.asarray(frequencies)
self.monitor = self.sim.add_mode_monitor(frequencies,mp.FluxRegion(center=self.volume.center,size=self.volume.size))
self.monitor = self.sim.add_mode_monitor(frequencies,mp.FluxRegion(center=self.volume.center,size=self.volume.size),yee_grid=True)
self.normal_direction = self.monitor.normal_direction
return self.monitor

def place_adjoint_source(self,dJ,dt):
def place_adjoint_source(self,dJ):
'''Places an equivalent eigenmode monitor facing the opposite direction. Calculates the
correct scaling/time profile.
dJ ........ the user needs to pass the dJ/dMonitor evaluation
dt ........ the timestep size from sim.fields.dt of the forward sim
'''
dt = self.sim.fields.dt
T = self.sim.meep_time()

dJ = np.atleast_1d(dJ)
# determine starting kpoint for reverse mode eigenmode source
direction_scalar = 1 if self.forward else -1
Expand Down Expand Up @@ -76,28 +79,39 @@ def place_adjoint_source(self,dJ,dt):
dV = 1/self.sim.resolution * 1/self.sim.resolution
else:
dV = 1/self.sim.resolution * 1/self.sim.resolution * 1/self.sim.resolution
da_dE = 0.5*(dV * self.cscale)
scale = da_dE * dJ * 1j * 2 * np.pi * self.frequencies / np.array([self.time_src.fourier_transform(f) for f in self.frequencies]) # final scale factor

da_dE = 0.5 * self.cscale # scalar popping out of derivative
iomega = (1.0 - np.exp(-1j * (2 * np.pi * self.frequencies) * dt)) * (1.0 / dt) # scaled frequency factor with discrete time derivative fix

src = self.time_src

# an ugly way to calcuate the scaled dtft of the forward source
y = np.array([src.swigobj.current(t,dt) for t in np.arange(0,T,dt)]) # time domain signal
fwd_dtft = np.matmul(np.exp(1j*2*np.pi*self.frequencies[:,np.newaxis]*np.arange(y.size)*dt), y)*dt/np.sqrt(2*np.pi) # dtft

# we need to compensate for the phase added by the time envelope at our freq of interest
src_center_dtft = np.matmul(np.exp(1j*2*np.pi*np.array([src.frequency])[:,np.newaxis]*np.arange(y.size)*dt), y)*dt/np.sqrt(2*np.pi)
adj_src_phase = np.exp(1j*np.angle(src_center_dtft))

if self.frequencies.size == 1:
# Single frequency simulations. We need to drive it with a time profile.
src = self.time_src
amp = scale
amp = da_dE * dV * dJ * iomega / fwd_dtft / adj_src_phase # final scale factor
else:
# TODO: In theory we should be able drive the source without normalizing out the time profile.
# But for some reason, there is a frequency dependent scaling discrepency. It works now for
# multiple monitors and multiple sources, but we should figure out why this is.
src = FilteredSource(self.time_src.frequency,self.frequencies,scale,dt,self.time_src) # generate source from broadband response
# multi frequency simulations
scale = da_dE * dV * dJ * iomega / adj_src_phase
src = FilteredSource(self.time_src.frequency,self.frequencies,scale,dt) # generate source from broadband response
amp = 1

# generate source object
self.source = mp.EigenModeSource(src,
self.source = [mp.EigenModeSource(src,
eig_band=self.mode,
direction=mp.NO_DIRECTION,
eig_kpoint=k0,
amplitude=amp,
eig_match_freq=True,
size=self.volume.size,
center=self.volume.center,
**self.EigenMode_kwargs)
**self.EigenMode_kwargs)]

return self.source

Expand All @@ -108,7 +122,7 @@ def __call__(self):
# Eigenmode data
direction = mp.NO_DIRECTION if self.kpoint_func else mp.AUTOMATIC
ob = self.sim.get_eigenmode_coefficients(self.monitor,[self.mode],direction=direction,kpoint_func=self.kpoint_func,**self.EigenMode_kwargs)
self.eval = np.squeeze(ob.alpha[:,:,self.forward]) # record eigenmode coefficients for scaling
self.eval = np.squeeze(ob.alpha[:,:,self.forward]) # record eigenmode coefficients for scaling
self.cscale = ob.cscale # pull scaling factor

return self.eval
Expand Down
121 changes: 67 additions & 54 deletions python/adjoint/optimization_problem.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,28 +5,35 @@
from collections import namedtuple

Grid = namedtuple('Grid', ['x', 'y', 'z', 'w'])
YeeDims = namedtuple('YeeDims', ['Ex','Ey','Ez'])

class DesignRegion(object):
def __init__(self,design_parameters,volume=None, size=None, center=mp.Vector3()):
def __init__(self,design_parameters,volume=None, size=None, center=mp.Vector3(), MaterialGrid=None):
self.volume = volume if volume else mp.Volume(center=center,size=size)
self.size=self.volume.size
self.center=self.volume.center
self.design_parameters=design_parameters
self.num_design_params=design_parameters.num_params
self.MaterialGrid=MaterialGrid
def update_design_parameters(self,design_parameters):
self.design_parameters.update_parameters(design_parameters)
def get_gradient(self,fields_a,fields_f,frequencies,geom_list,f):
# sanitize the input
if (fields_a.ndim < 5) or (fields_f.ndim < 5):
raise ValueError("Fields arrays must have 5 dimensions (x,y,z,frequency,component)")
def get_gradient(self,sim,fields_a,fields_f,frequencies):
for c in range(3):
fields_a[c] = fields_a[c].flatten(order='C')
fields_f[c] = fields_f[c].flatten(order='C')
fields_a = np.concatenate(fields_a)
fields_f = np.concatenate(fields_f)
num_freqs = np.array(frequencies).size

grad = np.zeros((self.num_design_params*num_freqs,)) # preallocate
grad = np.zeros((num_freqs,self.num_design_params)) # preallocate

geom_list = sim.geometry
f = sim.fields
vol = sim._fit_volume_to_simulation(self.volume)
# compute the gradient
mp._get_gradient(grad,fields_a,fields_f,self.volume,np.array(frequencies),geom_list,f)
mp._get_gradient(grad,fields_a,fields_f,vol,np.array(frequencies),geom_list,f)

return np.squeeze(grad.reshape(self.num_design_params,num_freqs,order='F'))
return np.squeeze(grad).T

class OptimizationProblem(object):
"""Top-level class in the MEEP adjoint module.
Expand Down Expand Up @@ -108,6 +115,8 @@ def __init__(self,
# ADJ - The optimizer has already run an adjoint simulation (but not yet calculated the gradient)
self.current_state = "INIT"

self.gradient = []

def __call__(self, rho_vector=None, need_value=True, need_gradient=True):
"""Evaluate value and/or gradient of objective function.
"""
Expand Down Expand Up @@ -176,17 +185,20 @@ def prepare_forward_run(self):
self.forward_monitors.append(m.register_monitors(self.frequencies))

# register design region
self.design_region_monitors = [self.sim.add_dft_fields([mp.Ex,mp.Ey,mp.Ez],self.frequencies,where=dr.volume,yee_grid=False) for dr in self.design_regions]
self.design_region_monitors = [self.sim.add_dft_fields([mp.Ex,mp.Ey,mp.Ez],self.frequencies,where=dr.volume,yee_grid=True) for dr in self.design_regions]

# store design region voxel parameters
self.design_grids = [Grid(*self.sim.get_array_metadata(dft_cell=drm)) for drm in self.design_region_monitors]
self.design_grids = []
for drm in self.design_region_monitors:
s = [self.sim.get_array_slice_dimensions(c,vol=drm.where)[0] for c in [mp.Ex,mp.Ey,mp.Ez]]
self.design_grids += [YeeDims(*s)]

def forward_run(self):
# set up monitors
self.prepare_forward_run()

# Forward run
self.sim.run(until_after_sources=stop_when_dft_decayed(self.sim, self.forward_monitors, self.decay_dt, self.decay_fields, self.fcen_idx, self.decay_by, self.minimum_run_time))
self.sim.run(until_after_sources=stop_when_dft_decayed(self.sim, self.design_region_monitors, self.decay_dt, self.decay_fields, self.fcen_idx, self.decay_by, True, self.minimum_run_time))

# record objective quantities from user specified monitors
self.results_list = []
Expand All @@ -199,53 +211,55 @@ def forward_run(self):
self.f0 = self.f0[0]

# Store forward fields for each set of design variables in array (x,y,z,field_components,frequencies)
self.d_E = [np.zeros((len(dg.x),len(dg.y),len(dg.z),self.nf,3),dtype=np.complex128) for dg in self.design_grids]
self.d_E = [[np.zeros((self.nf,c[0],c[1],c[2]),dtype=np.complex128) for c in dg] for dg in self.design_grids]
for nb, dgm in enumerate(self.design_region_monitors):
for f in range(self.nf):
for ic, c in enumerate([mp.Ex,mp.Ey,mp.Ez]):
self.d_E[nb][:,:,:,f,ic] = atleast_3d(self.sim.get_dft_array(dgm,c,f))
for ic, c in enumerate([mp.Ex,mp.Ey,mp.Ez]):
for f in range(self.nf):
self.d_E[nb][ic][f,:,:,:] = atleast_3d(self.sim.get_dft_array(dgm,c,f))

# store objective function evaluation in memory
self.f_bank.append(self.f0)

# update solver's current state
self.current_state = "FWD"

def adjoint_run(self,objective_idx=0):
# Grab the simulation step size from the forward run
self.dt = self.sim.fields.dt

# Prepare adjoint run
self.sim.reset_meep()

# Replace sources with adjoint sources
def prepare_adjoint_run(self,objective_idx):
# Compute adjoint sources
self.adjoint_sources = []
for mi, m in enumerate(self.objective_arguments):
dJ = jacobian(self.objective_functions[objective_idx],mi)(*self.results_list) # get gradient of objective w.r.t. monitor
self.adjoint_sources.append(m.place_adjoint_source(dJ,self.dt)) # place the appropriate adjoint sources
if np.any(dJ):
self.adjoint_sources += m.place_adjoint_source(dJ) # place the appropriate adjoint sources

# Reset the fields
self.sim.reset_meep()

# Update the sources
self.sim.change_sources(self.adjoint_sources)

# register design flux
# TODO use yee grid directly
self.design_region_monitors = [self.sim.add_dft_fields([mp.Ex,mp.Ey,mp.Ez],self.frequencies,where=dr.volume,yee_grid=False) for dr in self.design_regions]
self.design_region_monitors = [self.sim.add_dft_fields([mp.Ex,mp.Ey,mp.Ez],self.frequencies,where=dr.volume,yee_grid=True) for dr in self.design_regions]

def adjoint_run(self,objective_idx=0):
# set up adjoint sources and monitors
self.prepare_adjoint_run(objective_idx)

# Adjoint run
self.sim.run(until_after_sources=stop_when_dft_decayed(self.sim, self.design_region_monitors, self.decay_dt, self.decay_fields, self.fcen_idx, self.decay_by, self.minimum_run_time))
self.sim.run(until_after_sources=stop_when_dft_decayed(self.sim, self.design_region_monitors, self.decay_dt, self.decay_fields, self.fcen_idx, self.decay_by, True, self.minimum_run_time))

# Store adjoint fields for each design set of design variables in array (x,y,z,field_components,frequencies)
self.a_E.append([np.zeros((len(dg.x),len(dg.y),len(dg.z),self.nf,3),dtype=np.complex128) for dg in self.design_grids])
self.a_E.append([[np.zeros((self.nf,c[0],c[1],c[2]),dtype=np.complex128) for c in dg] for dg in self.design_grids])
for nb, dgm in enumerate(self.design_region_monitors):
for f in range(self.nf):
for ic, c in enumerate([mp.Ex,mp.Ey,mp.Ez]):
self.a_E[objective_idx][nb][:,:,:,f,ic] = atleast_3d(self.sim.get_dft_array(dgm,c,f))
for ic, c in enumerate([mp.Ex,mp.Ey,mp.Ez]):
for f in range(self.nf):
self.a_E[objective_idx][nb][ic][f,:,:,:] = atleast_3d(self.sim.get_dft_array(dgm,c,f))

# update optimizer's state
self.current_state = "ADJ"

def calculate_gradient(self):
# Iterate through all design regions and calculate gradient
self.gradient = [[dr.get_gradient(self.a_E[ar][dri],self.d_E[dri],self.frequencies,self.sim.geometry,self.sim.fields) for dri, dr in enumerate(self.design_regions)] for ar in range(len(self.objective_functions))]

self.gradient = [[dr.get_gradient(self.sim,self.a_E[ar][dri],self.d_E[dri],self.frequencies) for dri, dr in enumerate(self.design_regions)] for ar in range(len(self.objective_functions))]
# Cleanup list of lists
if len(self.gradient) == 1:
self.gradient = self.gradient[0] # only one objective function
Expand Down Expand Up @@ -308,9 +322,9 @@ def calculate_fd_gradient(self,num_gradients=1,db=1e-4,design_variables_idx=0,fi
self.forward_monitors = []
for m in self.objective_arguments:
self.forward_monitors.append(m.register_monitors(self.frequencies))

self.sim.run(until_after_sources=stop_when_dft_decayed(self.sim, self.forward_monitors, self.decay_dt, self.decay_fields, self.fcen_idx, self.decay_by, self.minimum_run_time))

self.sim.run(until_after_sources=stop_when_dft_decayed(self.sim, self.forward_monitors, self.decay_dt, self.decay_fields, self.fcen_idx, self.decay_by, True, self.minimum_run_time))
# record final objective function value
results_list = []
for m in self.objective_arguments:
Expand All @@ -332,8 +346,8 @@ def calculate_fd_gradient(self,num_gradients=1,db=1e-4,design_variables_idx=0,fi
self.forward_monitors.append(m.register_monitors(self.frequencies))

# add monitor used to track dft convergence
self.sim.run(until_after_sources=stop_when_dft_decayed(self.sim, self.forward_monitors, self.decay_dt, self.decay_fields, self.fcen_idx, self.decay_by, self.minimum_run_time))

self.sim.run(until_after_sources=stop_when_dft_decayed(self.sim, self.forward_monitors, self.decay_dt, self.decay_fields, self.fcen_idx, self.decay_by, True, self.minimum_run_time))
# record final objective function value
results_list = []
for m in self.objective_arguments:
Expand Down Expand Up @@ -380,7 +394,7 @@ def plot2D(self,init_opt=False, **kwargs):

self.sim.plot2D(**kwargs)

def stop_when_dft_decayed(simob, mon, dt, c, fcen_idx, decay_by, minimum_run_time=0):
def stop_when_dft_decayed(simob, mon, dt, c, fcen_idx, decay_by, yee_grid=False, minimum_run_time=0):
'''Step function that monitors the relative change in DFT fields for a list of monitors.
mon ............. a list of monitors
Expand All @@ -389,18 +403,17 @@ def stop_when_dft_decayed(simob, mon, dt, c, fcen_idx, decay_by, minimum_run_tim
'''

# get monitor dft output array dimensions
x = []
y = []
z = []
dims = []
for m in mon:
xi,yi,zi,wi = simob.get_array_metadata(dft_cell=m)
x.append(len(xi))
y.append(len(yi))
z.append(len(zi))

ci_dims = []
for ci in c:
comp = ci if yee_grid else mp.Dielectric
ci_dims += [simob.get_array_slice_dimensions(comp,vol=m.where)[0]]
dims.append(ci_dims)

# Record data in closure so that we can persitently edit
closure = {
'previous_fields': [np.ones((x[mi],y[mi],z[mi],len(c)),dtype=np.complex128) for mi, m in enumerate(mon)],
'previous_fields': [[np.ones(di,dtype=np.complex128) for di in d] for d in dims],
't0': 0
}

Expand All @@ -413,17 +426,17 @@ def _stop(sim):

# Pull all the relevant frequency and spatial dft points
relative_change = []
current_fields = [np.zeros((x[mi],y[mi],z[mi],len(c)), dtype=np.complex128) for mi in range(len(mon))]
current_fields = [[0 for di in d] for d in dims]
for mi, m in enumerate(mon):
for ic, cc in enumerate(c):
if isinstance(m,mp.DftFlux):
current_fields[mi][:,:,:,ic] = atleast_3d(mp.get_fluxes(m)[fcen_idx])
current_fields[mi][ic] = mp.get_fluxes(m)[fcen_idx]
elif isinstance(m,mp.DftFields):
current_fields[mi][:,:,:,ic] = atleast_3d(sim.get_dft_array(m, cc, fcen_idx))
current_fields[mi][ic] = atleast_3d(sim.get_dft_array(m, cc, fcen_idx))
else:
raise TypeError("Monitor of type {} not supported".format(type(m)))
relative_change_raw = np.abs(previous_fields[mi] - current_fields[mi]) / np.abs(previous_fields[mi])
relative_change.append(np.mean(relative_change_raw.flatten())) # average across space and frequency
relative_change_raw = np.abs(previous_fields[mi][ic] - current_fields[mi][ic]) / np.abs(previous_fields[mi][ic])
relative_change.append(np.mean(relative_change_raw.flatten())) # average across space and frequency
relative_change = np.mean(relative_change) # average across monitors
closure['previous_fields'] = current_fields
closure['t0'] = sim.round_time()
Expand Down
Loading