Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

plot geometry for dispersive materials without initializing structure object #1827

Merged
merged 8 commits into from
Nov 24, 2021
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
45 changes: 28 additions & 17 deletions doc/docs/Python_User_Interface.md
Original file line number Diff line number Diff line change
Expand Up @@ -676,16 +676,21 @@ frequency-independent part of $\mu$ (the $\omega\to\infty$ limit).
<div class="class_members" markdown="1">

```python
def get_epsilon_grid(self, xtics=None, ytics=None, ztics=None):
def get_epsilon_grid(self,
xtics=None,
ytics=None,
ztics=None,
frequency=0):
```

<div class="method_docstring" markdown="1">

Given three 1d NumPy arrays (`xtics`,`ytics`,`ztics`) which define the coordinates of a Cartesian
grid anywhere within the cell volume, compute the trace of the $\varepsilon$ tensor from the `geometry`
exactly at each grid point. (For [`MaterialGrid`](#materialgrid)s, the $\varepsilon$ at each grid
point is computed using bilinear interpolation from the nearest `MaterialGrid` points and possibly also
projected to form a level set.) Note that this is different from `get_epsilon_point` which computes
grid anywhere within the cell volume, compute the trace of the $\varepsilon(f)$ tensor at frequency
$f$ (in Meep units) from the `geometry` exactly at each grid point. `frequency` defaults to 0 which is
the instantaneous $\varepsilon$. (For [`MaterialGrid`](#materialgrid)s, the $\varepsilon$ at each
grid point is computed using bilinear interpolation from the nearest `MaterialGrid` points and possibly
also projected to form a level set.) Note that this is different from `get_epsilon_point` which computes
$\varepsilon$ by bilinearly interpolating from the nearest Yee grid points. This function is useful for
sampling the material geometry to any arbitrary resolution. The return value is a NumPy array with shape
equivalent to `numpy.meshgrid(xtics,ytics,ztics)`. Empty dimensions are collapsed.
Expand Down Expand Up @@ -2067,7 +2072,7 @@ including outside the cell and a `near2far` object, returns the computed
of fields $(E_x^1,E_y^1,E_z^1,H_x^1,H_y^1,H_z^1,E_x^2,E_y^2,E_z^2,H_x^2,H_y^2,H_z^2,...)$
in Cartesian coordinates and
$(E_r^1,E_\phi^1,E_z^1,H_r^1,H_\phi^1,H_z^1,E_r^2,E_\phi^2,E_z^2,H_r^2,H_\phi^2,H_z^2,...)$
in cylindrical coordinates for the frequencies 1,2,,`nfreq`.
in cylindrical coordinates for the frequencies 1,2,...,`nfreq`.

</div>

Expand Down Expand Up @@ -2609,7 +2614,7 @@ fr = mp.FluxRegion(volume=mp.GDSII_vol(fname, layer, zmin, zmax))

### Data Visualization

This module provides basic visualization functionality for the simulation domain. The spirit of the module is to provide functions that can be called with *no customization options whatsoever* and will do useful relevant things by default, but which can also be customized in cases where you *do* want to take the time to spruce up the output. The `Simulation` class provides the following methods:
This module provides basic visualization functionality for the simulation domain. The intent of the module is to provide functions that can be called with *no customization options whatsoever* and will do useful relevant things by default, but which can also be customized in cases where you *do* want to take the time to spruce up the output. The `Simulation` class provides the following methods:


<a id="Simulation.plot2D"></a>
Expand Down Expand Up @@ -2648,14 +2653,18 @@ sim.run(...)
field_func = lambda x: 20*np.log10(np.abs(x))
import matplotlib.pyplot as plt
sim.plot2D(fields=mp.Ez,
field_parameters={'alpha':0.8, 'cmap':'RdBu', 'interpolation':'none', 'post_process':field_func},
boundary_parameters={'hatch':'o', 'linewidth':1.5, 'facecolor':'y', 'edgecolor':'b', 'alpha':0.3})
field_parameters={'alpha':0.8, 'cmap':'RdBu', 'interpolation':'none', 'post_process':field_func},
boundary_parameters={'hatch':'o', 'linewidth':1.5, 'facecolor':'y', 'edgecolor':'b', 'alpha':0.3})
plt.show()
plt.savefig('sim_domain.png')
```
If you just want to quickly visualize the simulation domain without the fields (i.e., when
setting up your simulation), there is no need to invoke the `run` function prior to calling
`plot2D`. Just define the `Simulation` object followed by any DFT monitors and then
invoke `plot2D`.

Note: When running a [parallel simulation](Parallel_Meep.md), the `plot2D` function expects to be called
on all processes, but only generates a plot on the master process.
Note: When running a [parallel simulation](Parallel_Meep.md), the `plot2D` function expects
to be called on all processes, but only generates a plot on the master process.

**Parameters:**

Expand All @@ -2677,6 +2686,12 @@ on all processes, but only generates a plot on the master process.
- `alpha=1.0`: transparency of geometry
- `contour=False`: if `True`, plot a contour of the geometry rather than its image
- `contour_linewidth=1`: line width of the contour lines if `contour=True`
- `frequency=None`: for materials with a [frequency-dependent
permittivity](Materials.md#material-dispersion) $\varepsilon(f)$, specifies the
frequency $f$ (in Meep units) of the real part of the permittivity to use in the
plot. Defaults to the `frequency` parameter of the [Source](#source) object.
- `resolution=None`: the resolution of the $\varepsilon$ grid. Defaults to the
`resolution` of the `Simulation` object.
* `boundary_parameters`: a `dict` of optional plotting parameters that override
the default parameters for the boundary layers.
- `alpha=1.0`: transparency of boundary layers
Expand Down Expand Up @@ -2713,10 +2728,6 @@ on all processes, but only generates a plot on the master process.
- `alpha=0.6`: transparency of fields
- `post_process=np.real`: post processing function to apply to fields (must be
a function object)
* `frequency`: for materials with a [frequency-dependent
permittivity](Materials.md#material-dispersion) $\varepsilon(f)$, specifies the
frequency $f$ (in Meep units) of the real part of the permittivity to use in the
plot. Defaults to the `frequency` parameter of the [Source](#source) object.

</div>

Expand Down Expand Up @@ -4401,7 +4412,7 @@ def __init__(self,
medium2,
weights=None,
grid_type='U_DEFAULT',
do_averaging=False,
do_averaging=True,
beta=0,
eta=0.5,
damping=0):
Expand Down Expand Up @@ -6893,7 +6904,7 @@ A class used to record the fields during timestepping (i.e., a [`run`](#run-func
function). The object is initialized prior to timestepping by specifying the
simulation object and the field component. The object can then be passed to any
[step-function modifier](#step-function-modifiers). For example, one can record the
E<sub>z</sub> fields at every one time unit using:
$E_z$ fields at every one time unit using:

```py
animate = mp.Animate2D(sim,
Expand Down
2 changes: 1 addition & 1 deletion doc/docs/Python_User_Interface.md.in
Original file line number Diff line number Diff line change
Expand Up @@ -480,7 +480,7 @@ This feature is only available if Meep is built with [libGDSII](Build_From_Sourc

### Data Visualization

This module provides basic visualization functionality for the simulation domain. The spirit of the module is to provide functions that can be called with *no customization options whatsoever* and will do useful relevant things by default, but which can also be customized in cases where you *do* want to take the time to spruce up the output. The `Simulation` class provides the following methods:
This module provides basic visualization functionality for the simulation domain. The intent of the module is to provide functions that can be called with *no customization options whatsoever* and will do useful relevant things by default, but which can also be customized in cases where you *do* want to take the time to spruce up the output. The `Simulation` class provides the following methods:

@@ Simulation.plot2D @@
@@ Simulation.plot3D @@
Expand Down
12 changes: 7 additions & 5 deletions python/meep.i
Original file line number Diff line number Diff line change
Expand Up @@ -1097,12 +1097,12 @@ void _get_gradient(PyObject *grad, double scalegrad, PyObject *fields_a, PyObjec
$1 = (double *)array_data($input);
}

%typecheck(SWIG_TYPECHECK_POINTER, fragment="NumPy_Fragments") double* grid_vals {
%typecheck(SWIG_TYPECHECK_POINTER, fragment="NumPy_Fragments") std::complex<double>* grid_vals {
$1 = is_array($input);
}

%typemap(in, fragment="NumPy_Macros") double* grid_vals {
$1 = (double *)array_data($input);
%typemap(in, fragment="NumPy_Macros") std::complex<double>* grid_vals {
$1 = (std::complex<double> *)array_data($input);
}

// typemap for solve_cw:
Expand Down Expand Up @@ -2041,7 +2041,8 @@ void _get_epsilon_grid(geometric_object_list gobj_list,
int nx, double *xtics,
int ny, double *ytics,
int nz, double *ztics,
double *grid_vals) {
std::complex<double> *grid_vals,
double frequency) {
meep_geom::get_epsilon_grid(gobj_list,
mlist,
_default_material,
Expand All @@ -2052,7 +2053,8 @@ void _get_epsilon_grid(geometric_object_list gobj_list,
nx, xtics,
ny, ytics,
nz, ztics,
grid_vals);
grid_vals,
frequency);
}

%}
73 changes: 44 additions & 29 deletions python/simulation.py
Original file line number Diff line number Diff line change
Expand Up @@ -2225,18 +2225,19 @@ def get_mu_point(self, pt, frequency=0):
v3 = py_v3_to_vec(self.dimensions, pt, self.is_cylindrical)
return self.fields.get_mu(v3,frequency)

def get_epsilon_grid(self, xtics=None, ytics=None, ztics=None):
def get_epsilon_grid(self, xtics=None, ytics=None, ztics=None, frequency=0):
"""
Given three 1d NumPy arrays (`xtics`,`ytics`,`ztics`) which define the coordinates of a Cartesian
grid anywhere within the cell volume, compute the trace of the $\\varepsilon$ tensor from the `geometry`
exactly at each grid point. (For [`MaterialGrid`](#materialgrid)s, the $\\varepsilon$ at each grid
point is computed using bilinear interpolation from the nearest `MaterialGrid` points and possibly also
projected to form a level set.) Note that this is different from `get_epsilon_point` which computes
grid anywhere within the cell volume, compute the trace of the $\\varepsilon(f)$ tensor at frequency
$f$ (in Meep units) from the `geometry` exactly at each grid point. `frequency` defaults to 0 which is
the instantaneous $\\varepsilon$. (For [`MaterialGrid`](#materialgrid)s, the $\\varepsilon$ at each
grid point is computed using bilinear interpolation from the nearest `MaterialGrid` points and possibly
also projected to form a level set.) Note that this is different from `get_epsilon_point` which computes
$\\varepsilon$ by bilinearly interpolating from the nearest Yee grid points. This function is useful for
sampling the material geometry to any arbitrary resolution. The return value is a NumPy array with shape
equivalent to `numpy.meshgrid(xtics,ytics,ztics)`. Empty dimensions are collapsed.
"""
grid_vals = np.squeeze(np.empty((len(xtics), len(ytics), len(ztics))))
grid_vals = np.squeeze(np.empty((len(xtics), len(ytics), len(ztics)), dtype=np.complex128))
gv = self._create_grid_volume(False)
mp._get_epsilon_grid(self.geometry,
self.extra_materials,
Expand All @@ -2247,7 +2248,8 @@ def get_epsilon_grid(self, xtics=None, ytics=None, ztics=None):
len(xtics), xtics,
len(ytics), ytics,
len(ztics), ztics,
grid_vals)
grid_vals,
frequency)
return grid_vals

def get_filename_prefix(self):
Expand Down Expand Up @@ -2755,8 +2757,8 @@ def get_farfield(self, near2far, x):
(Fourier-transformed) "far" fields at `x` as list of length 6`nfreq`, consisting
of fields $(E_x^1,E_y^1,E_z^1,H_x^1,H_y^1,H_z^1,E_x^2,E_y^2,E_z^2,H_x^2,H_y^2,H_z^2,...)$
in Cartesian coordinates and
$(E_r^1,E_\phi^1,E_z^1,H_r^1,H_\phi^1,H_z^1,E_r^2,E_\phi^2,E_z^2,H_r^2,H_\phi^2,H_z^2,...)$
in cylindrical coordinates for the frequencies 1,2,,`nfreq`.
$(E_r^1,E_\\phi^1,E_z^1,H_r^1,H_\\phi^1,H_z^1,E_r^2,E_\\phi^2,E_z^2,H_r^2,H_\\phi^2,H_z^2,...)$
in cylindrical coordinates for the frequencies 1,2,...,`nfreq`.
"""
return mp._get_farfield(near2far.swigobj, py_v3_to_vec(self.dimensions, x, is_cylindrical=self.is_cylindrical))

Expand Down Expand Up @@ -4084,14 +4086,18 @@ def plot2D(self, ax=None, output_plane=None, fields=None, labels=False,
field_func = lambda x: 20*np.log10(np.abs(x))
import matplotlib.pyplot as plt
sim.plot2D(fields=mp.Ez,
field_parameters={'alpha':0.8, 'cmap':'RdBu', 'interpolation':'none', 'post_process':field_func},
boundary_parameters={'hatch':'o', 'linewidth':1.5, 'facecolor':'y', 'edgecolor':'b', 'alpha':0.3})
field_parameters={'alpha':0.8, 'cmap':'RdBu', 'interpolation':'none', 'post_process':field_func},
boundary_parameters={'hatch':'o', 'linewidth':1.5, 'facecolor':'y', 'edgecolor':'b', 'alpha':0.3})
plt.show()
plt.savefig('sim_domain.png')
```
If you just want to quickly visualize the simulation domain without the fields (i.e., when
setting up your simulation), there is no need to invoke the `run` function prior to calling
`plot2D`. Just define the `Simulation` object followed by any DFT monitors and then
invoke `plot2D`.
Note: When running a [parallel simulation](Parallel_Meep.md), the `plot2D` function expects to be called
on all processes, but only generates a plot on the master process.
Note: When running a [parallel simulation](Parallel_Meep.md), the `plot2D` function expects
to be called on all processes, but only generates a plot on the master process.
**Parameters:**
Expand All @@ -4113,6 +4119,12 @@ def plot2D(self, ax=None, output_plane=None, fields=None, labels=False,
- `alpha=1.0`: transparency of geometry
- `contour=False`: if `True`, plot a contour of the geometry rather than its image
- `contour_linewidth=1`: line width of the contour lines if `contour=True`
- `frequency=None`: for materials with a [frequency-dependent
permittivity](Materials.md#material-dispersion) $\\varepsilon(f)$, specifies the
frequency $f$ (in Meep units) of the real part of the permittivity to use in the
plot. Defaults to the `frequency` parameter of the [Source](#source) object.
- `resolution=None`: the resolution of the $\\varepsilon$ grid. Defaults to the
`resolution` of the `Simulation` object.
* `boundary_parameters`: a `dict` of optional plotting parameters that override
the default parameters for the boundary layers.
- `alpha=1.0`: transparency of boundary layers
Expand Down Expand Up @@ -4149,23 +4161,26 @@ def plot2D(self, ax=None, output_plane=None, fields=None, labels=False,
- `alpha=0.6`: transparency of fields
- `post_process=np.real`: post processing function to apply to fields (must be
a function object)
* `frequency`: for materials with a [frequency-dependent
permittivity](Materials.md#material-dispersion) $\\varepsilon(f)$, specifies the
frequency $f$ (in Meep units) of the real part of the permittivity to use in the
plot. Defaults to the `frequency` parameter of the [Source](#source) object.
"""
return vis.plot2D(self, ax=ax, output_plane=output_plane, fields=fields, labels=labels,
eps_parameters=eps_parameters, boundary_parameters=boundary_parameters,
source_parameters=source_parameters,monitor_parameters=monitor_parameters,
field_parameters=field_parameters, frequency=frequency,
plot_eps_flag=plot_eps_flag, plot_sources_flag=plot_sources_flag,
plot_monitors_flag=plot_monitors_flag, plot_boundaries_flag=plot_boundaries_flag,
**kwargs)


def plot_fields(self,**kwargs):
return vis.plot_fields(self,**kwargs)
return vis.plot2D(self,
ax=ax,
output_plane=output_plane,
fields=fields,
labels=labels,
eps_parameters=eps_parameters,
boundary_parameters=boundary_parameters,
source_parameters=source_parameters,
monitor_parameters=monitor_parameters,
field_parameters=field_parameters,
frequency=frequency,
plot_eps_flag=plot_eps_flag,
plot_sources_flag=plot_sources_flag,
plot_monitors_flag=plot_monitors_flag,
plot_boundaries_flag=plot_boundaries_flag,
**kwargs)

def plot_fields(self, **kwargs):
return vis.plot_fields(self, **kwargs)

def plot3D(self):
"""
Expand Down
2 changes: 1 addition & 1 deletion python/tests/test_visualization.py
Original file line number Diff line number Diff line change
Expand Up @@ -161,7 +161,7 @@ def test_animation_output(self):
sim = setup_sim() # generate 2D simulation

Animate = mp.Animate2D(sim,fields=mp.Ez, realtime=False, normalize=False) # Check without normalization
Animate_norm = mp.Animate2D(sim,mp.Ez,realtime=False,normalize=True) # Check with normalization
Animate_norm = mp.Animate2D(sim, mp.Ez, realtime=False, normalize=True) # Check with normalization

# test both animation objects during same run
sim.run(
Expand Down
Loading