Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

tutorial for oblique planewave in cylindrical coordinate #2663

Merged
merged 6 commits into from
Mar 14, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
152 changes: 152 additions & 0 deletions doc/docs/Python_Tutorials/Cylindrical_Coordinates.md
Original file line number Diff line number Diff line change
Expand Up @@ -455,6 +455,158 @@ As shown below, the results for the scattering cross section computed using cyli
![](../images/cylinder_cross_section.png#center)


Scattering of Sphere with Oblique Planewave
-------------------------------------------

It is also possible to launch an oblique incident planewave in cylindrical coordinate by decomposing the planewave $A_xe^{ik_xx+ik_yy}\hat{x} + A_ye^{ik_xx+ik_yy}\hat{y}$ into $\sum_m (J_r(r, m)\hat{r} + J_\phi(r, m)\hat{\phi})e^{im\phi}$ through [Jacobi-Anger expansion](https://en.wikipedia.org/wiki/Jacobi%E2%80%93Anger_expansion). The exact expressions of $J_r(r,m)$ and $J_\phi(r,m)$ are given [here](http://github.com/zlin-opt/axisym_meta3d_inverse_design/blob/master/Implementation_of_FDFD_with_Cylindrical_Coordinates.pdf) by Zin Lin. In the simplest case of normal incidence, $J_r(r,m)$ and $J_\phi(r,m)$ are nonzero only when $m = \pm 1$, as shown in the [previous tutorial](https://meep.readthedocs.io/en/latest/Python_Tutorials/Cylindrical_Coordinates/#scattering-cross-section-of-a-finite-dielectric-cylinder).

Given the decomposition of planewave into the sum of different current sources at each $m$, we can run individual simulations at each $m$ with their corresponding source amplitudes and record the relevant physical quantities. For some quantities such as fields, linearity implies that we can simply sum the results from each simulations; for some other quantities such as flux, orthogonality implies cross terms will be zero, and we can again simply sum the results. Moreover, simulations
at each $m$ values are embarrassingly parallel so they can be run simultaneously.

We present an example below that calculates the scattered flux of a sphere. Because of the spherical symmetry, incidence at different angle should have identical results. We can thus use this feature to check our approach. Note that because of the axial symmetry in the cylindrical coordinates, we cannot distinguish different azimuthal angles but we can distinguish different polar angles. We thus simply choose our incidence to be of form $E_ye^{ik_xx}$, and we can vary the angle of incidence by varying $k_x$.
mochen4 marked this conversation as resolved.
Show resolved Hide resolved

On the other hand, because the source amplitudes $J_r(r,m)$ and $J_\phi(r,m)$ are generally not constant and extend to infinity, we used the principle of equivalence (for reference, see [Electromagnetic wave source condition](https://arxiv.org/pdf/1301.5366.pdf)) to create equivalent sources that are of finite sizes. Specifically, with the chosen incidence, the E fields in space are $E_ye^{ik_xx+ik_zz}$, and thus H fields can be computed by taking the curl; then Jacobi-Anger expansion can express the dependencies in $x$ and $y$ in terms of $m$ and $r$; afterwards, we created a box of sources surrounding the geometry and specify sources of amplitude $J = n \times H$ and $K = - n \times E$.

Empirically, we found that the Courant factor has to scale as $1/(|m|+0.5)$ in cylindrical coordinate to maintain numerical stability. By default, Meep uses the same Courant factor but instead zeros out fields near axis for $|m| > 1 $. In this tutorial, we choose to scale the Courant factor accordingly and force Meep to use the actual fields near axis via `accurate_fields_near_cylorigin=True`.

```py
import numpy as np
from scipy import special
import meep as mp
mp.verbosity(0)
r = 0.6 # size of flux box
cyl_r = 0.5 # radius of sphere
h = 2 * r # height/diameter of sphere

wvl = 2 * np.pi * cyl_r / 4
frq_cen = 1 / wvl
dfrq = 0.2
nfrq = 1
resolution, mrange = 50, 5
dpml = 0.5 * wvl
dair = 1.0 * wvl
pml_layers = [mp.PML(thickness=dpml)]
sr = r + dair + dpml
sz = dpml + dair + h + dair + dpml
cell_size = mp.Vector3(sr, 0, sz)
n_cyl = 2.0
geometry = [mp.Sphere(material=mp.Medium(index=n_cyl), center=mp.Vector3(), radius=cyl_r)]

k_cen = 2 * np.pi * frq_cen
alpha_list = [0, np.pi/36, np.pi/24, np.pi/18, np.pi/12]
alpha_range = len(alpha_list)


src_size_tb = 2*r
src_size_side = 3*r
src_center_top = mp.Vector3(src_size_tb/2, 0, src_size_side/2)
src_center_bottom = mp.Vector3(src_size_tb/2, 0, -src_size_side/2)
src_center_side = mp.Vector3(src_size_tb, 0, 0)

scatt_flux_m = np.zeros((alpha_range, mrange+1))
for alpha_i in range(alpha_range):
alpha = alpha_list[alpha_i]
kxy, kz = k_cen*np.sin(alpha), k_cen * np.cos(alpha)
amp_side = lambda v3: np.exp(1j * kz*(v3.z+src_size_side/2))
phase_top = amp_side(src_center_top)

for cur_m in range(0, mrange+1):
if alpha!=0 or cur_m == 1:
coeff_p1 = 0.5 * (1j)**(cur_m+1)
coeff_m1 = 0.5 * (1j)**(cur_m-1)

src_cen = src_size_tb/2
Jpm = lambda v3: coeff_p1 * special.jv(cur_m+1, kxy * (v3.x+src_cen)) + coeff_m1 * special.jv(cur_m-1, kxy * (v3.x+src_cen))
Jrm = lambda v3: 1j * coeff_p1 * special.jv(cur_m+1, kxy * (v3.x+src_cen)) - 1j * coeff_m1 * special.jv(cur_m-1, kxy * (v3.x+src_cen))
Jside = (1j)**cur_m * special.jv(cur_m, kxy*src_size_tb) * kxy/k_cen

src_t = mp.GaussianSource(frq_cen, fwidth=dfrq)
sourcesp = [
mp.Source(src_t,component=mp.Er, center=src_center_bottom,size=mp.Vector3(src_size_tb), amplitude = -kz/k_cen, amp_func = Jrm),
mp.Source(src_t,component=mp.Ep, center=src_center_bottom,size=mp.Vector3(src_size_tb), amplitude = -kz/k_cen, amp_func = Jpm),
mp.Source(src_t,component=mp.Hr, center=src_center_bottom,size=mp.Vector3(src_size_tb), amp_func = Jpm),
mp.Source(src_t,component=mp.Hp, center=src_center_bottom,size=mp.Vector3(src_size_tb), amplitude = -1, amp_func = Jrm),
mp.Source(src_t,component=mp.Er, center=src_center_top,size=mp.Vector3(src_size_tb), amplitude = phase_top*kz/k_cen, amp_func = Jrm),
mp.Source(src_t,component=mp.Ep, center=src_center_top,size=mp.Vector3(src_size_tb), amplitude = phase_top*kz/k_cen, amp_func = Jpm),
mp.Source(src_t,component=mp.Hr, center=src_center_top,size=mp.Vector3(src_size_tb), amplitude = -phase_top, amp_func = Jpm),
mp.Source(src_t,component=mp.Hp, center=src_center_top,size=mp.Vector3(src_size_tb), amplitude = phase_top, amp_func = Jrm),
mp.Source(src_t,component=mp.Ez, center=src_center_side,size=mp.Vector3(z=src_size_side), amplitude = -Jrm(src_center_top)*kz/k_cen, amp_func = amp_side),
mp.Source(src_t,component=mp.Hz, center=src_center_side,size=mp.Vector3(z=src_size_side), amplitude = Jpm(src_center_top), amp_func = amp_side),
mp.Source(src_t,component=mp.Ep, center=src_center_side,size=mp.Vector3(z=src_size_side), amplitude = Jside, amp_func = amp_side),
]


sim = mp.Simulation(
cell_size=cell_size,
boundary_layers=pml_layers,
resolution=resolution,
sources=sourcesp,
dimensions=mp.CYLINDRICAL,
m=cur_m,
force_complex_fields = True,
accurate_fields_near_cylorigin=True,
Courant=min(0.5, 1/(abs(cur_m)+0.5)))

box_z1 = sim.add_flux(frq_cen, dfrq, nfrq,
mp.FluxRegion(center=mp.Vector3(0.5 * r, 0, -0.5 * h), size=mp.Vector3(r)))
box_z2 = sim.add_flux(frq_cen, dfrq, nfrq,
mp.FluxRegion(center=mp.Vector3(0.5 * r, 0, +0.5 * h), size=mp.Vector3(r)))
box_r = sim.add_flux(frq_cen, dfrq, nfrq,
mp.FluxRegion(center=mp.Vector3(r), size=mp.Vector3(z=h)))


sim.run(until_after_sources=10)

freqs = mp.get_flux_freqs(box_z1)
box_z1_data = sim.get_flux_data(box_z1)
box_z2_data = sim.get_flux_data(box_z2)
box_r_data = sim.get_flux_data(box_r)
box_z1_flux0 = mp.get_fluxes(box_z1)


sim.reset_meep()

sim = mp.Simulation(
cell_size=cell_size,
geometry=geometry,
boundary_layers=pml_layers,
resolution=resolution,
sources=sourcesp,
dimensions=mp.CYLINDRICAL,
m=cur_m,
force_complex_fields = True,
accurate_fields_near_cylorigin=True,
mochen4 marked this conversation as resolved.
Show resolved Hide resolved
Courant=min(0.5, 1/(abs(cur_m)+0.5)))
mochen4 marked this conversation as resolved.
Show resolved Hide resolved

box_z1 = sim.add_flux(frq_cen, dfrq, nfrq,
mp.FluxRegion(center=mp.Vector3(0.5 * r, 0, -0.5 * h), size=mp.Vector3(r)))
box_z2 = sim.add_flux(frq_cen, dfrq, nfrq,
mp.FluxRegion(center=mp.Vector3(0.5 * r, 0, +0.5 * h), size=mp.Vector3(r)))
box_r = sim.add_flux(frq_cen, dfrq, nfrq,
mp.FluxRegion(center=mp.Vector3(r), size=mp.Vector3(z=h)))


sim.load_minus_flux_data(box_z1, box_z1_data)
sim.load_minus_flux_data(box_z2, box_z2_data)
sim.load_minus_flux_data(box_r, box_r_data)


sim.run(until_after_sources=100)

box_z1_flux = mp.get_fluxes(box_z1)
box_z2_flux = mp.get_fluxes(box_z2)
box_r_flux = mp.get_fluxes(box_r)

scatt_flux_m[alpha_i, cur_m] = box_z1_flux[0] - box_z2_flux[0] - box_r_flux[0]
sim.reset_meep()

scatt_power_m = np.zeros((alpha_range, mrange+1))
for i in range(mrange+1):
scatt_power_m[:,i] = - 2*np.sum(scatt_flux_m[:,0:(i+1)], axis=1) + scatt_flux_m[:,0]

print(scatt_power_m)

```

Focusing Properties of a Binary-Phase Zone Plate
------------------------------------------------
Expand Down