A Deep Neural Network-based diffusion equation solver using TensorFlow.
- Sayan Adhikari, UiO, Norway. @sayanadhikari
- Rupak Mukherjee, PPPL, USA.
First make a clone of the master branch using the following command
git clone https://github.com/Neural-Plasma/deepDiffusion.git
Then enter inside the deepDiffusion directory
cd deepDiffusion
Now create a conda environment using the given environment.yml file
conda env create -f environment.yml
Activate the conda environment
conda activate deepDiffusion
Run the code using following command
python deepDiff --train
python deepDiff --test
Edit the input.ini and run the code again. The basic structure of input.ini is provided below,
;
; @file input.ini
; @brief deepDiffusion inputfile.
; @author Sayan Adhikari <sayan.adhikari@fys.uio.no>
; Rupak Mukherjee <rupakm@princeton.edu>
[grid]
# box size, mm
w = 10.
h = 10.
# intervals in x-, y- directions, mm
dx = 0.1
dy = 0.1
[par]
# Thermal diffusivity of steel, mm2.s-1
D = 1.
[time]
# Number of timesteps
nsteps = 101
# time step to get data from dnn
dnn_start = 50
[dnn]
# number of neurons
nn = 100
epochs = 500
patience = 50
batch_size=32
nlayer = 6
[figures]
plot_fig = True
use_latex = True
add_labels = True
[diagnostics]
dumpData = True
We welcome contributions to this project.
- Fork it.
- Create your feature branch (
git checkout -b my-new-feature
). - Commit your changes (
git commit -am 'Add some feature'
). - Push to the branch (
git push origin my-new-feature
). - Create new Pull Request.
Released under the MIT license.