综述性文章:
-
Deep learning for sensor-based human activity recognition: overview, challenges and opportunities.
Chen, Kaixuan, et al.
arXiv preprint arXiv:2001.07416 (2020).
-
Deep learning for sensor-based activity recognition: A survey.
Wang, Jindong, et al.
Pattern Recognition Letters 119 (2019): 3-11.
-
Multimodal deep learning for activity and context recognition.
Radu, Valentin, et al.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 1.4 (2018): 1-27.
https://www.repository.cam.ac.uk/bitstream/handle/1810/293497/main_no_copyright.pdf?sequence=3
Baseline 方法:
-
Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition[J].
Ordóñez F J, Roggen D
Sensors, 2016, 16(1): 115.
-
**Recognizing detailed human context in the wild from smartphones and smartwatches.[J] **
Vaizman, Yonatan, Katherine Ellis, and Gert Lanckriet.
IEEE Pervasive Computing 16.4 (2017): 62-74.
TBA
TBA
1 .Time series classification using multi-channels deep convolutional neural networks[C].
Zheng Y, Liu Q, Chen E, et al
International Conference on Web-Age Information Management. Springer International Publishing, 2014: 298-310.
Andrew Campbell,Dartmouth教授,普适计算领域泰斗级人物,着重研究智能手机和传感器下的行为识别。Google Scholar引用超20000次。
Tanzeem Choudhury,MIT Media Lab毕业,现在Cornell副教授。MIT评为全球最年轻的35岁以下科学家,行为识别领域专家。Google Scholar引用超6000次。
Nic Lane,PhD in Dartmouth。Bell Labs,MSRA。主要研究方向为人群多样性条件下的行为识别。Google Scholar引用超5000次。