Generate avro schemas from python dataclasses. Code generation from avro schemas. Serialize/Deserialize python instances with avro schemas
python 3.8+
with pip
or poetry
:
pip install dataclasses-avroschema
or poetry install
- pydantic:
pip install 'dataclasses-avroschema[pydantic]'
orpoetry install --extras "pydantic"
- faust-streaming:
pip install 'dataclasses-avroschema[faust]'
orpoetry install --extras "faust"
- faker:
pip install 'dataclasses-avroschema[faker]'
orpoetry install --extras "faker"
Note: You can install all extra dependencies with pip install dataclasses-avroschema[faust, pydantic, faker]
or poetry install --extras "pydantic faust faker"
To add avro schemas cli
install dc-avro
pip install 'dataclasses-avroschema[cli]'
or poetry install --with cli
https://marcosschroh.github.io/dataclasses-avroschema/
from dataclasses import dataclass
import enum
import typing
from dataclasses_avroschema import AvroModel, types
class FavoriteColor(enum.Enum):
BLUE = "BLUE"
YELLOW = "YELLOW"
GREEN = "GREEN"
@dataclass
class User(AvroModel):
"An User"
name: str
age: int
pets: typing.List[str]
accounts: typing.Dict[str, int]
favorite_colors: FavoriteColor
country: str = "Argentina"
address: str = None
class Meta:
namespace = "User.v1"
aliases = ["user-v1", "super user"]
User.avro_schema()
'{
"type": "record",
"name": "User",
"doc": "An User",
"namespace": "User.v1",
"aliases": ["user-v1", "super user"],
"fields": [
{"name": "name", "type": "string"},
{"name": "age", "type": "long"},
{"name": "pets", "type": "array", "items": "string"},
{"name": "accounts", "type": "map", "values": "long"},
{"name": "favorite_color", "type": {"type": "enum", "name": "FavoriteColor", "symbols": ["Blue", "Yellow", "Green"]}}
{"name": "country", "type": "string", "default": "Argentina"},
{"name": "address", "type": ["null", "string"], "default": null}
]
}'
User.avro_schema_to_python()
{
"type": "record",
"name": "User",
"doc": "An User",
"namespace": "User.v1",
"aliases": ["user-v1", "super user"],
"fields": [
{"name": "name", "type": "string"},
{"name": "age", "type": "long"},
{"name": "pets", "type": {"type": "array", "items": "string", "name": "pet"}},
{"name": "accounts", "type": {"type": "map", "values": "long", "name": "account"}},
{"name": "favorite_colors", "type": {"type": "enum", "name": "FavoriteColor", "symbols": ["BLUE", "YELLOW", "GREEN"]}},
{"name": "country", "type": "string", "default": "Argentina"},
{"name": "address", "type": ["null", "string"], "default": None}
],
}
For serialization is neccesary to use python class/dataclasses instance
from dataclasses import dataclass
import typing
from dataclasses_avroschema import AvroModel
@dataclass
class Address(AvroModel):
"An Address"
street: str
street_number: int
@dataclass
class User(AvroModel):
"User with multiple Address"
name: str
age: int
addresses: typing.List[Address]
address_data = {
"street": "test",
"street_number": 10,
}
# create an Address instance
address = Address(**address_data)
data_user = {
"name": "john",
"age": 20,
"addresses": [address],
}
# create an User instance
user = User(**data_user)
user.serialize()
# >>> b"\x08john(\x02\x08test\x14\x00"
user.serialize(serialization_type="avro-json")
# >>> b'{"name": "john", "age": 20, "addresses": [{"street": "test", "street_number": 10}]}'
# Get the json from the instance
user.to_json()
# >>> '{"name": "john", "age": 20, "addresses": [{"street": "test", "street_number": 10}]}'
# Get a python dict
user.to_dict()
# >>> {"name": "john", "age": 20, "addresses": [{"street": "test", "street_number": 10}]}
Deserialization could take place with an instance dataclass or the dataclass itself. Can return the dict representation or a new class instance
import typing
import dataclasses
from dataclasses_avroschema import AvroModel
@dataclasses.dataclass
class Address(AvroModel):
"An Address"
street: str
street_number: int
@dataclasses.dataclass
class User(AvroModel):
"User with multiple Address"
name: str
age: int
addresses: typing.List[Address]
avro_binary = b"\x08john(\x02\x08test\x14\x00"
avro_json_binary = b'{"name": "john", "age": 20, "addresses": [{"street": "test", "street_number": 10}]}'
# return a new class instance!!
User.deserialize(avro_binary)
# >>>> User(name='john', age=20, addresses=[Address(street='test', street_number=10)])
# return a python dict
User.deserialize(avro_binary, create_instance=False)
# >>> {"name": "john", "age": 20, "addresses": [{"street": "test", "street_number": 10}]}
# return a new class instance!!
User.deserialize(avro_json_binary, serialization_type="avro-json")
# >>>> User(name='john', age=20, addresses=[Address(street='test', street_number=10)])
# return a python dict
User.deserialize(avro_json_binary, serialization_type="avro-json", create_instance=False)
# >>> {"name": "john", "age": 20, "addresses": [{"street": "test", "street_number": 10}]}
To add dataclasses-avroschema
functionality to pydantic
you only need to replace BaseModel
by AvroBaseModel
:
import typing
import enum
import dataclasses
from dataclasses_avroschema.avrodantic import AvroBaseModel
from pydantic import Field
class FavoriteColor(str, enum.Enum):
BLUE = "BLUE"
YELLOW = "YELLOW"
GREEN = "GREEN"
@dataclasses.dataclass
class UserAdvance(AvroBaseModel):
name: str
age: int
pets: typing.List[str] = Field(default_factory=lambda: ["dog", "cat"])
accounts: typing.Dict[str, int] = Field(default_factory=lambda: {"key": 1})
has_car: bool = False
favorite_colors: FavoriteColor = FavoriteColor.BLUE
country: str = "Argentina"
address: str = None
class Meta:
schema_doc = False
# Avro schema
UserAdvance.avro_schema()
'{
"type": "record",
"name": "UserAdvance",
"fields": [
{"name": "name", "type": "string"},
{"name": "age", "type": "long"},
{"name": "pets", "type": {"type": "array", "items": "string", "name": "pet"}, "default": ["dog", "cat"]},
{"name": "accounts", "type": {"type": "map", "values": "long", "name": "account"}, "default": {"key": 1}},
{"name": "has_car", "type": "boolean", "default": false},
{"name": "favorite_colors", "type": {"type": "enum", "name": "favorite_color", "symbols": ["BLUE", "YELLOW", "GREEN"]}, "default": "BLUE"},
{"name": "country", "type": "string", "default": "Argentina"},
{"name": "address", "type": ["null", "string"], "default": null}
]
}'
# Json schema
UserAdvance.json_schema()
{
"title": "UserAdvance",
"description": "UserAdvance(*, name: str, age: int, pets: List[str] = None, ...",
"type": "object",
"properties": {
"name": {"title": "Name", "type": "string"},
"age": {"title": "Age", "type": "integer"},
"pets": {"title": "Pets", "type": "array", "items": {"type": "string"}},
"accounts": {"title": "Accounts", "type": "object", "additionalProperties": {"type": "integer"}},
"has_car": {"title": "Has Car", "default": false, "type": "boolean"},
"favorite_colors": {"default": "BLUE", "allOf": [{"$ref": "#/definitions/FavoriteColor"}]},
"country": {"title": "Country", "default": "Argentina", "type": "string"},
"address": {"title": "Address", "type": "string"}}, "required": ["name", "age"], "definitions": {"FavoriteColor": {"title": "FavoriteColor", "description": "An enumeration.", "enum": ["BLUE", "YELLOW", "GREEN"], "type": "string"}}
}
user = UserAdvance(name="bond", age=50)
# pydantic
user.dict()
# >>> {'name': 'bond', 'age': 50, 'pets': ['dog', 'cat'], 'accounts': {'key': 1}, 'has_car': False, 'favorite_colors': <FavoriteColor.BLUE: 'BLUE'>, 'country': 'Argentina', 'address': None}
# pydantic
user.json()
# >>> '{"name": "bond", "age": 50, "pets": ["dog", "cat"], "accounts": {"key": 1}, "has_car": false, "favorite_colors": "BLUE", "country": "Argentina", "address": null}'
# pydantic
user = UserAdvance(name="bond")
# ValidationError: 1 validation error for UserAdvance
# age
# field required (type=value_error.missing)
# dataclasses-avroschema
event = user.serialize()
print(event)
# >>> b'\x08bondd\x04\x06dog\x06cat\x00\x02\x06key\x02\x00\x00\x00\x12Argentina\x00'
UserAdvance.deserialize(data=event)
# >>> UserAdvance(name='bond', age=50, pets=['dog', 'cat'], accounts={'key': 1}, has_car=False, favorite_colors=<FavoriteColor.BLUE: 'BLUE'>, country='Argentina', address=None)
Under examples folder you can find 3 differents kafka examples, one with aiokafka (async
) showing the simplest use case when a AvroModel
instance is serialized and sent it thorught kafka, and the event is consumed.
The other two examples are sync
using the kafka-python driver, where the avro-json
serialization and schema evolution
(FULL
compatibility) is shown.
Also, there are two redis
examples using redis streams
with walrus and redisgears-py
Dataclasses Avro Schema also includes a factory
feature, so you can generate fast
python instances and use them, for example, to test your data streaming pipelines. Instances can be generated using the fake
method.
Note: This feature is not enabled by default and requires you have the faker
extra installed. You may install it with pip install 'dataclasses-avroschema[faker]'
import typing
import dataclasses
from dataclasses_avroschema import AvroModel
@dataclasses.dataclass
class Address(AvroModel):
"An Address"
street: str
street_number: int
@dataclasses.dataclass
class User(AvroModel):
"User with multiple Address"
name: str
age: int
addresses: typing.List[Address]
Address.fake()
# >>>> Address(street='PxZJILDRgbXyhWrrPWxQ', street_number=2067)
User.fake()
# >>>> User(name='VGSBbOGfSGjkMDnefHIZ', age=8974, addresses=[Address(street='vNpPYgesiHUwwzGcmMiS', street_number=4790)])
- Primitive types: int, long, double, float, boolean, string and null support
- Complex types: enum, array, map, fixed, unions and records support
-
typing.Annotated
supported -
typing.Literal
supported - Logical Types: date, time (millis and micro), datetime (millis and micro), uuid support
- Schema relations (oneToOne, oneToMany)
- Recursive Schemas
- Generate Avro Schemas from
faust.Record
- Instance serialization correspondent to
avro schema
generated - Data deserialization. Return python dict or class instance
- Generate json from python class instance
- Case Schemas
- Generate models from
avsc
files - Examples of integration with
kafka
drivers: aiokafka, kafka-python - Example of integration with
redis
drivers: walrus and redisgears-py - Factory instances
- Pydantic integration
Poetry is needed to install the dependencies and develope locally
- Install dependencies:
poetry install --all-extras
- Code linting:
./scripts/format
- Run tests:
./scripts/test
For commit messages we use commitizen in order to standardize a way of committing rules