A blazing fast inference solution for text embeddings models.
Benchmark for BAAI/bge-base-en-v1.5 on an Nvidia A10 with a sequence length of 512 tokens:
Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5. TEI implements many features such as:
- No model graph compilation step
- Metal support for local execution on Macs
- Small docker images and fast boot times. Get ready for true serverless!
- Token based dynamic batching
- Optimized transformers code for inference using Flash Attention, Candle and cuBLASLt
- Safetensors weight loading
- Production ready (distributed tracing with Open Telemetry, Prometheus metrics)
You can use any JinaBERT model with Alibi or absolute positions or any BERT, CamemBERT, RoBERTa, or XLM-RoBERTa model
with absolute positions in text-embeddings-inference
.
Support for other model types will be added in the future.
Examples of supported models:
MTEB Rank | Model Type | Model ID |
---|---|---|
1 | Bert | BAAI/bge-large-en-v1.5 |
2 | BAAI/bge-base-en-v1.5 | |
3 | llmrails/ember-v1 | |
4 | thenlper/gte-large | |
5 | thenlper/gte-base | |
6 | intfloat/e5-large-v2 | |
7 | BAAI/bge-small-en-v1.5 | |
10 | intfloat/e5-base-v2 | |
11 | XLM-RoBERTa | intfloat/multilingual-e5-large |
N/A | JinaBERT | jinaai/jina-embeddings-v2-base-en |
N/A | JinaBERT | jinaai/jina-embeddings-v2-small-en |
You can explore the list of best performing text embeddings models here.
text-embeddings-inference
v0.4.0 added support for CamemBERT, RoBERTa and XLM-RoBERTa Sequence Classification models.
Example of supported sequence classification models:
Task | Model Type | Model ID | Revision |
---|---|---|---|
Re-Ranking | XLM-RoBERTa | BAAI/bge-reranker-large | refs/pr/4 |
Re-Ranking | XLM-RoBERTa | BAAI/bge-reranker-base | refs/pr/5 |
Sentiment Analysis | RoBERTa | SamLowe/roberta-base-go_emotions |
model=BAAI/bge-large-en-v1.5
revision=refs/pr/5
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:0.6 --model-id $model --revision $revision
And then you can make requests like
curl 127.0.0.1:8080/embed \
-X POST \
-d '{"inputs":"What is Deep Learning?"}' \
-H 'Content-Type: application/json'
Note: To use GPUs, you need to install the NVIDIA Container Toolkit. NVIDIA drivers on your machine need to be compatible with CUDA version 12.2 or higher.
To see all options to serve your models:
text-embeddings-router --help
Usage: text-embeddings-router [OPTIONS]
Options:
--model-id <MODEL_ID>
The name of the model to load. Can be a MODEL_ID as listed on <https://hf.co/models> like `thenlper/gte-base`.
Or it can be a local directory containing the necessary files as saved by `save_pretrained(...)` methods of
transformers
[env: MODEL_ID=]
[default: thenlper/gte-base]
--revision <REVISION>
The actual revision of the model if you're referring to a model on the hub. You can use a specific commit id
or a branch like `refs/pr/2`
[env: REVISION=]
--tokenization-workers <TOKENIZATION_WORKERS>
Optionally control the number of tokenizer workers used for payload tokenization, validation and truncation.
Default to the number of CPU cores on the machine
[env: TOKENIZATION_WORKERS=]
--dtype <DTYPE>
The dtype to be forced upon the model
[env: DTYPE=]
[possible values: float16, float32]
--pooling <POOLING>
Optionally control the pooling method for embedding models.
If `pooling` is not set, the pooling configuration will be parsed from the model `1_Pooling/config.json`
configuration.
If `pooling` is set, it will override the model pooling configuration
[env: POOLING=]
[possible values: cls, mean]
--max-concurrent-requests <MAX_CONCURRENT_REQUESTS>
The maximum amount of concurrent requests for this particular deployment.
Having a low limit will refuse clients requests instead of having them wait for too long and is usually good
to handle backpressure correctly
[env: MAX_CONCURRENT_REQUESTS=]
[default: 512]
--max-batch-tokens <MAX_BATCH_TOKENS>
**IMPORTANT** This is one critical control to allow maximum usage of the available hardware.
This represents the total amount of potential tokens within a batch.
For `max_batch_tokens=1000`, you could fit `10` queries of `total_tokens=100` or a single query of `1000` tokens.
Overall this number should be the largest possible until the model is compute bound. Since the actual memory
overhead depends on the model implementation, text-embeddings-inference cannot infer this number automatically.
[env: MAX_BATCH_TOKENS=]
[default: 16384]
--max-batch-requests <MAX_BATCH_REQUESTS>
Optionally control the maximum number of individual requests in a batch
[env: MAX_BATCH_REQUESTS=]
--max-client-batch-size <MAX_CLIENT_BATCH_SIZE>
Control the maximum number of inputs that a client can send in a single request
[env: MAX_CLIENT_BATCH_SIZE=]
[default: 32]
--hf-api-token <HF_API_TOKEN>
Your HuggingFace hub token
[env: HF_API_TOKEN=]
--hostname <HOSTNAME>
The IP address to listen on
[env: HOSTNAME=]
[default: 0.0.0.0]
-p, --port <PORT>
The port to listen on
[env: PORT=]
[default: 3000]
--uds-path <UDS_PATH>
The name of the unix socket some text-embeddings-inference backends will use as they communicate internally
with gRPC
[env: UDS_PATH=]
[default: /tmp/text-embeddings-inference-server]
--huggingface-hub-cache <HUGGINGFACE_HUB_CACHE>
The location of the huggingface hub cache. Used to override the location if you want to provide a mounted disk
for instance
[env: HUGGINGFACE_HUB_CACHE=/data]
--json-output
Outputs the logs in JSON format (useful for telemetry)
[env: JSON_OUTPUT=]
--otlp-endpoint <OTLP_ENDPOINT>
[env: OTLP_ENDPOINT=]
--cors-allow-origin <CORS_ALLOW_ORIGIN>
[env: CORS_ALLOW_ORIGIN=]
Text Embeddings Inference ships with multiple Docker images that you can use to target a specific backend:
Architecture | Image |
---|---|
CPU | ghcr.io/huggingface/text-embeddings-inference:cpu-0.6 |
Volta | NOT SUPPORTED |
Turing (T4, RTX 2000 series, ...) | ghcr.io/huggingface/text-embeddings-inference:turing-0.6 (experimental) |
Ampere 80 (A100, A30) | ghcr.io/huggingface/text-embeddings-inference:0.6 |
Ampere 86 (A10, A40, ...) | ghcr.io/huggingface/text-embeddings-inference:86-0.6 |
Ada Lovelace (RTX 4000 series, ...) | ghcr.io/huggingface/text-embeddings-inference:89-0.6 |
Hopper (H100) | ghcr.io/huggingface/text-embeddings-inference:hopper-0.6 (experimental) |
Warning: Flash Attention is turned off by default for the Turing image as it suffers from precision issues.
You can turn Flash Attention v1 ON by using the USE_FLASH_ATTENTION=True
environment variable.
You can consult the OpenAPI documentation of the text-embeddings-inference
REST API using the /docs
route.
The Swagger UI is also available
at: https://huggingface.github.io/text-embeddings-inference.
You have the option to utilize the HUGGING_FACE_HUB_TOKEN
environment variable for configuring the token employed by
text-embeddings-inference
. This allows you to gain access to protected resources.
For example:
- Go to https://huggingface.co/settings/tokens
- Copy your cli READ token
- Export
HUGGING_FACE_HUB_TOKEN=<your cli READ token>
or with Docker:
model=<your private model>
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
token=<your cli READ token>
docker run --gpus all -e HUGGING_FACE_HUB_TOKEN=$token -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:0.6 --model-id $model
text-embeddings-inference
v0.4.0 added support for CamemBERT, RoBERTa and XLM-RoBERTa Sequence Classification models.
Re-rankers models are Sequence Classification cross-encoders models with a single class that scores the similarity
between a query and a text.
See this blogpost by the LlamaIndex team to understand how you can use re-rankers models in your RAG pipeline to improve downstream performance.
model=BAAI/bge-reranker-large
revision=refs/pr/4
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:0.6 --model-id $model --revision $revision
And then you can rank the similarity between a query and a list of texts with:
curl 127.0.0.1:8080/rerank \
-X POST \
-d '{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}' \
-H 'Content-Type: application/json'
You can also use classic Sequence Classification models like SamLowe/roberta-base-go_emotions
:
model=SamLowe/roberta-base-go_emotions
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:0.6 --model-id $model
Once you have deployed the model you can use the predict
endpoint to get the emotions most associated with an input:
curl 127.0.0.1:8080/predict \
-X POST \
-d '{"inputs":"I like you."}' \
-H 'Content-Type: application/json'
text-embeddings-inference
is instrumented with distributed tracing using OpenTelemetry. You can use this feature
by setting the address to an OTLP collector with the --otlp-endpoint
argument.
text-embeddings-inference
offers a gRPC API as an alternative to the default HTTP API for high performance
deployments. The API protobuf definition can be found here.
You can use the gRPC API by adding the -grpc
tag to any TEI Docker image. For example:
model=BAAI/bge-large-en-v1.5
revision=refs/pr/5
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:0.6-grpc --model-id $model --revision $revision
grpcurl -d '{"inputs": "What is Deep Learning"}' -plaintext 0.0.0.0:8080 tei.v1.Embed/Embed
You can also opt to install text-embeddings-inference
locally.
First install Rust:
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
Then run:
# On x86
cargo install --path router -F candle -F mkl
# On M1 or M2
cargo install --path router -F candle -F metal
You can now launch Text Embeddings Inference on CPU with:
model=BAAI/bge-large-en-v1.5
revision=refs/pr/5
text-embeddings-router --model-id $model --revision $revision --port 8080
Note: on some machines, you may also need the OpenSSL libraries and gcc. On Linux machines, run:
sudo apt-get install libssl-dev gcc -y
GPUs with Cuda compute capabilities < 7.5 are not supported (V100, Titan V, GTX 1000 series, ...).
Make sure you have Cuda and the nvidia drivers installed. NVIDIA drivers on your device need to be compatible with CUDA version 12.2 or higher. You also need to add the nvidia binaries to your path:
export PATH=$PATH:/usr/local/cuda/bin
Then run:
# This can take a while as we need to compile a lot of cuda kernels
# On Turing GPUs (T4, RTX 2000 series ... )
cargo install --path router -F candle-cuda-turing --no-default-features
# On Ampere and Hopper
cargo install --path router -F candle-cuda --no-default-features
You can now launch Text Embeddings Inference on GPU with:
model=BAAI/bge-large-en-v1.5
revision=refs/pr/5
text-embeddings-router --model-id $model --revision $revision --port 8080
You can build the CPU container with:
docker build .
To build the Cuda containers, you need to know the compute cap of the GPU you will be using at runtime.
Then you can build the container with:
# Example for Turing (T4, RTX 2000 series, ...)
runtime_compute_cap=75
# Example for A100
runtime_compute_cap=80
# Example for A10
runtime_compute_cap=86
# Example for Ada Lovelace (RTX 4000 series, ...)
runtime_compute_cap=89
# Example for H100
runtime_compute_cap=90
docker build . -f Dockerfile-cuda --build-arg CUDA_COMPUTE_CAP=$runtime_compute_cap