Official code for "DexGraspNet 2.0: Learning Generative Dexterous Grasping in Large-scale Synthetic Cluttered Scenes" (CoRL 2024)
- Ubuntu 20.04
- CUDA 11.7 (If you use other CUDA versions, the versions of torch and pytorch3d and the environment variable CUDA_HOME need to be changed.)
- sudo (Only needed if you don't have libopenblas-dev installed)
conda create -n DexGrasp python=3.8
conda activate DexGrasp
conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c pytorch -c nvidia
wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch3d/linux-64/pytorch3d-0.7.5-py38_cu117_pyt201.tar.bz2
conda install -y --use-local ./pytorch3d-0.7.5-py38_cu117_pyt201.tar.bz2
git clone git@github.com:wrc042/TorchSDF.git
(cd TorchSDF; pip install -e .)
git clone git@github.com:mzhmxzh/torchprimitivesdf.git
(cd torchprimitivesdf; pip install -e .)
# Download IsaacGym4 from https://developer.nvidia.com/isaac-gym
(cd isaacgym/python; pip install -e .)
pip install plotly
pip install transforms3d
pip install open3d==0.17.0
pip install urdf_parser_py
pip install tensorboard
pip install coacd
pip install rich
pip install ikpy
pip install einops
git clone git@github.com:huggingface/diffusers.git
(cd diffusers; pip install -e ".[torch]")
pip install graspnetAPI
pip install wandb
# wandb login
# enter the API key when prompted
# you can also use WANDB_MODE=offline in training if you don't need logging
git clone https://github.com/NVIDIA/MinkowskiEngine.git
sudo apt install libopenblas-dev
export CUDA_HOME=/usr/local/cuda-11.7
(cd MinkowskiEngine; python setup.py install --blas=openblas)
git clone https://github.com/nkolot/nflows.git
pip install -e nflows/
pip install numpy==1.23.0 # You can ignore the version conflict between graspnetAPI and numpy
# for gripper experiments, if the ap result is significantly low, there might be a bug in graspnetapi's np.matmul. please update numpy to 1.24.1 and replace the np.float to float whenever there is AttributeError: module 'numpy' has no attribute 'float' and all np.int to int whenever there is AttributeError: module 'numpy' has no attribute 'int'. Only two files need to be modified
# this might happen in some cpu
pip install PyOpenGL
pip install glfw
pip install pyglm
pip install healpy
pip install rtree
Download data from https://huggingface.co/datasets/lhrlhr/DexGraspNet2.0, then unzip them and put them in the data directory.
Users from Chinese mainland can download using mirrors like https://hf-mirror.com/
The data architecture should be:
data/
meshdata/
acronym_test_scenes/
scenes/
dex_graspness_new/ (you can also generate using src/preprocess/dex_graspness.py)
dex_grasps_new/
gripper_graspness/
gripper_grasps/
meshdata/
models/ (link to meshdata)
Download the checkpoints in the dataset link.
# Gripper (you can download gripper_grasps and gripper_graspness instead)
python src/preprocess/extract_gripper_grasp.py --start 0 --end 100 # require graspnet data
python src/preprocess/refine_dataset.py
python src/preprocess/gripper_graspness.py --start 0 --end 100
# Dexterous hand: compute graspness (you can download dex_graspness_new and dex_grasps_new instead)
python src/preprocess/dex_graspness.py --start 0 --end 100
python src/preprocess/dex_graspness.py --start 1000 --end 8500 # split this if you have multiple GPUs
# compute edges for evaluation
python src/preprocess/compute_edges.py --dataset graspnet --start 100 --end 190
python src/preprocess/compute_edges.py --dataset graspnet --start 200 --end 380
python src/preprocess/compute_edges.py --dataset graspnet --start 9000 --end 9900
python src/preprocess/compute_edges.py --dataset acronym
# collect network input for evaluation
python src/preprocess/compute_network_input_all.py --dataset graspnet --scene_id_start 100 --scene_id_end 190
python src/preprocess/compute_network_input_all.py --dataset graspnet --scene_id_start 200 --scene_id_end 380
python src/preprocess/compute_network_input_all.py --dataset graspnet --scene_id_start 9000 --scene_id_end 9900
python src/preprocess/compute_network_input_all.py --dataset acronym
# ours gripper
python src/train.py --exp_name exp_gripper_ours --yaml configs/network/train_gripper_ours.yaml
# ours dexterous hand
python src/train.py --exp_name exp_dex_ours --yaml configs/network/train_dex_ours.yaml
# isagrasp with graspness
python src/train.py --exp_name exp_dex_isagrasp --yaml configs/network/train_dex_isagrasp.yaml
# graspcvae with graspness
python src/train.py --exp_name exp_dex_grasptta --yaml configs/network/train_dex_grasptta.yaml
# gripper evaluation
python src/eval/eval_gripper.py --ckpt experiments/gripper_ours/ckpt/ckpt_50000.pth --split test_seen
python src/eval/eval_gripper.py --ckpt experiments/gripper_ours/ckpt/ckpt_50000.pth --split test_similar
python src/eval/eval_gripper.py --ckpt experiments/gripper_ours/ckpt/ckpt_50000.pth --split test_novel
# predictiong dexterous grasping poses
python src/eval/predict_dexterous_all_cates.py --ckpt experiments/dex_ours/ckpt/ckpt_50000.pth
# evaluate dexterous grasping poses in IsaacGym
python src/eval/evaluate_dexterous_all_cates.py # fill the ckpt path in ckpt_path_list in evaluate_dexterous_all.py. It is quicker to evaluate multiple checkpoints together
# print the dexterous grasping's simulation result
python src/eval/print_dexterous_result.py --ckpt experiments/dex_ours/ckpt/ckpt_50000.pth
visualize graspness, dexterous grasps, and their corresponding grasp points from the dataset
python tests/visualize_scene.py
python tests/visualize_dex_grasp.py
python tests/visualize_gripper_pred.py --ckpt_path=experiments/gripper_ours/ckpt/ckpt_50000.pth
python tests/visualize_dex_pred.py --ckpt_path=experiments/dex_ours/ckpt/ckpt_50000.pth
@inproceedings{zhang2024dexgraspnet,
title={DexGraspNet 2.0: Learning Generative Dexterous Grasping in Large-scale Synthetic Cluttered Scenes},
author={Zhang, Jialiang and Liu, Haoran and Li, Danshi and Yu, XinQiang and Geng, Haoran and Ding, Yufei and Chen, Jiayi and Wang, He},
booktitle={8th Annual Conference on Robot Learning},
year={2024}
}
This work and the dataset are licensed under CC BY-NC 4.0.