Chat-UniVi: Unified Visual Representation Empowers Large Language Models with Image and Video Understanding
💡 I also have other LLM projects that may interest you ✨.
MoH: Multi-Head Attention as Mixture-of-Head Attention
Peng Jin, Bo Zhu, Li Yuan, Shuicheng Yan
MoE++: Accelerating Mixture-of-Experts Methods with Zero-Computation Experts
Peng Jin, Bo Zhu, Li Yuan, Shuicheng Yan
-->
- [2024/04/05] We've revised the temporal evaluation performance of video understanding, resulting in an actual model performance of 47.9 instead of the previously stated 57.8. We sincerely apologize for any inconvenience our oversight may have caused you.
- [2024/04/05] Chat-UniVi has been selected as a Highlight paper at CVPR 2024! (Top 3% of 11532 submissions).
- [2024/02/27] Our Chat-UniVi has been accepted by CVPR 2024!
- [2024/01/05] We enhance the video loading code by introducing support for variable-length videos. This improvement involves eliminating the previous zero-filling operation on the video. We find that this updated video loading method significantly boosts performance (Results).
- [2023/12/05] The visualization script is available at VISUALIZATION.md.
- [2023/11/22] ⚡ The online demo is available at Hugging Face Demo. Welcome to try!
- [2023/11/22] The processed data is available at DATA.md.
- [2023/11/21] 💡 We release Chat-UniVi-13B. Our proposed unified visual representation framework greatly reduces the number of visual tokens, so you can train 13B unified image and video understanding models in full parameters directly on 8 A100 GPUs within 3 days. Chat-UniVi-13B has better performance (Results). The training code for Chat-UniVi-13B has been updated (TRAIN_AND_VALIDATE.md).
- [2023/11/21] We provide inference code for video understanding and image understanding.
- [2023/11/21] We enhance the video loading code by introducing support for variable-length videos. This improvement involves eliminating the previous zero-filling operation on the video. We find that this updated video loading method significantly boosts performance.
- [2023/11/15] Code are available now! Welcome to watch 👀 this repository for the latest updates.
We employ a set of dynamic visual tokens to uniformly represent images and videos. This representation framework empowers the model to efficiently utilize a limited number of visual tokens to simultaneously capture the spatial details necessary for images and the comprehensive temporal relationship required for videos.
Chat-UniVi is trained on a mixed dataset containing both images and videos, allowing direct application to tasks involving both mediums without requiring any modifications.
Extensive experimental results demonstrate that Chat-UniVi, as a unified model, consistently outperforms even existing methods exclusively designed for either images or videos.
Please change the model path on line 15 of the main_demo.py first. Then run the demo:
# For Chat-UniVi-7B
CUDA_VISIBLE_DEVICES=0 uvicorn main_demo_7B:app --host 0.0.0.0 --port 8888
# For Chat-UniVi-13B
CUDA_VISIBLE_DEVICES=0 uvicorn main_demo_13B:app --host 0.0.0.0 --port 8888
With translation API, our model can also support Chinese conversations. We will add code to support Chinese conversations in future updates.
Following LLaVA, we report the relative scores to GPT-4 for instruction-following questions.
Methods | LLM | Conversation | Detail Description | Complex Reasoning | All |
---|---|---|---|---|---|
Chat-UniVi-7B | Vicuna-7B | 84.1 | 74.2 | 93.7 | 84.2 |
Chat-UniVi-13B | Vicuna-13B | 84.1 | 79.4 | 94.7 | 86.1 |
Following Video-ChatGPT, we report the relative scores between the output of the model and the ground truth, with the assistance of GPT. It is worth noting that the results reported in Video-ChatGPT span a range from 0 to 5. To standardize the metrics, we normalize all scores to a scale of 0 to 100.
Methods | LLM | Correct | Detail | Context | Temporal | Consistency |
---|---|---|---|---|---|---|
Chat-UniVi-7B | Vicuna-7B | 57.8 | 58.2 | 69.2 | 47.9 | 56.2 |
Chat-UniVi-13B | Vicuna-13B | 59.4 | 59.8 | 70.5 | - | 60.6 |
We report both zero-shot and fine-tuning results on the ScienceQA test set.
Methods | LLM | Average | Subject | Context Modality | Grade | |||||
---|---|---|---|---|---|---|---|---|---|---|
NAT | SOC | LAN | TXT | IMG | NO | G1-6 | G7-12 | |||
Chat-UniVi-7B | Vicuna-7B | 88.78 | 88.50 | 93.03 | 85.91 | 88.51 | 85.97 | 88.15 | 88.88 | 88.60 |
Chat-UniVi-13B | Vicuna-13B | 90.99 | 90.41 | 95.05 | 88.91 | 89.64 | 88.05 | 90.94 | 91.19 | 90.64 |
We follow the evaluation protocol in Video-ChatGPT, i.e., employing GPT-assisted evaluation to assess the capabilities of models.
Methods | LLM Size | MSRVTT-QA | MSVD-QA | TGIF-QA | ActivityNet-QA | ||||
---|---|---|---|---|---|---|---|---|---|
Accuracy | Score | Accuracy | Score | Accuracy | Score | Accuracy | Score | ||
Video-LLaMA | 7B | 29.6 | 1.8 | 51.6 | 2.5 | - | - | 12.4 | 1.1 |
LLaMA-Adapter | 7B | 43.8 | 2.7 | 54.9 | 3.1 | - | - | 34.2 | 2.7 |
VideoChat | 7B | 45.0 | 2.5 | 56.3 | 2.8 | 34.4 | 2.3 | 26.5 | 2.2 |
Video-ChatGPT | 7B | 49.3 | 2.8 | 64.9 | 3.3 | 51.4 | 3.0 | 35.2 | 2.7 |
Video-LLaVA | 7B | 59.2 | 3.5 | 70.7 | 3.9 | 70.0 | 4.0 | 45.3 | 3.3 |
Chat-UniVi-7B | 7B | 54.6 | 3.1 | 65.0 | 3.6 | 60.3 | 3.4 | 45.8 | 3.2 |
Chat-UniVi-7B with new video loading code | 7B | 55.0 | 3.1 | 69.3 | 3.7 | 69.0 | 3.8 | 46.1 | 3.3 |
Chat-UniVi-7B v1.5 | 7B | 57.5 | 3.2 | 68.8 | 3.7 | 70.0 | 3.8 | 47.2 | 3.3 |
Our model also achieves impressive results in the object hallucination benchmark.
Methods | LLM Size | Random | Popular | Adversarial | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Accuracy | F1-Score | Yes | Accuracy | F1-Score | Yes | Accuracy | F1-Score | Yes | ||
LLaVA | 7B | 72.16 | 78.22 | 76.29 | 61.37 | 71.52 | 85.63 | 58.67 | 70.12 | 88.33 |
Video-LLaVA | 7B | 86.2 | 85.2 | 42.0 | 85.3 | 84.0 | 42.1 | 81.6 | 80.8 | 45.8 |
Chat-UniVi-7B | 7B | 85.19 | 86.05 | 54.67 | 69.50 | 74.39 | 69.10 | 64.97 | 71.54 | 73.10 |
Chat-UniVi-7B v1.5 | 7B | 87.01 | 86.09 | 41.86 | 85.87 | 84.76 | 42.73 | 83.23 | 82.31 | 44.77 |
Attention! If you are using a Windows system, please make sure to comment out deepspeed
in pyproject.toml (#Line 20), as installing deepspeed
may result in errors on Windows (see Link). Keep in mind that deepspeed
is intended for training models only. If you are solely engaged in inference and not training models, it is recommended to comment it out.
- Python >= 3.10
- Install required packages:
git clone https://github.com/PKU-YuanGroup/Chat-UniVi
cd Chat-UniVi
conda create -n chatunivi python=3.10 -y
conda activate chatunivi
pip install --upgrade pip
pip install -e .
# pip install ninja # If you only intend to perform inference, there's no need to install ```ninja```.
# pip install flash-attn --no-build-isolation # If you only intend to perform inference, there's no need to install ```flash-attn```.
We open source all modalities preprocessing code. If you want to load the model from the model hub on Hugging Face or on local, you can use the following code snippets.
import torch
import os
from ChatUniVi.constants import *
from ChatUniVi.conversation import conv_templates, SeparatorStyle
from ChatUniVi.model.builder import load_pretrained_model
from ChatUniVi.utils import disable_torch_init
from ChatUniVi.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
from PIL import Image
from decord import VideoReader, cpu
import numpy as np
def _get_rawvideo_dec(video_path, image_processor, max_frames=MAX_IMAGE_LENGTH, image_resolution=224, video_framerate=1, s=None, e=None):
# speed up video decode via decord.
if s is None:
start_time, end_time = None, None
else:
start_time = int(s)
end_time = int(e)
start_time = start_time if start_time >= 0. else 0.
end_time = end_time if end_time >= 0. else 0.
if start_time > end_time:
start_time, end_time = end_time, start_time
elif start_time == end_time:
end_time = start_time + 1
if os.path.exists(video_path):
vreader = VideoReader(video_path, ctx=cpu(0))
else:
print(video_path)
raise FileNotFoundError
fps = vreader.get_avg_fps()
f_start = 0 if start_time is None else int(start_time * fps)
f_end = int(min(1000000000 if end_time is None else end_time * fps, len(vreader) - 1))
num_frames = f_end - f_start + 1
if num_frames > 0:
# T x 3 x H x W
sample_fps = int(video_framerate)
t_stride = int(round(float(fps) / sample_fps))
all_pos = list(range(f_start, f_end + 1, t_stride))
if len(all_pos) > max_frames:
sample_pos = [all_pos[_] for _ in np.linspace(0, len(all_pos) - 1, num=max_frames, dtype=int)]
else:
sample_pos = all_pos
patch_images = [Image.fromarray(f) for f in vreader.get_batch(sample_pos).asnumpy()]
patch_images = torch.stack([image_processor.preprocess(img, return_tensors='pt')['pixel_values'][0] for img in patch_images])
slice_len = patch_images.shape[0]
return patch_images, slice_len
else:
print("video path: {} error.".format(video_path))
if __name__ == '__main__':
# Model Parameter
model_path = "Chat-UniVi/Chat-UniVi" # or "Chat-UniVi/Chat-UniVi-13B"、"Chat-UniVi/Chat-UniVi-v1.5"
video_path = ${video_path}
# The number of visual tokens varies with the length of the video. "max_frames" is the maximum number of frames.
# When the video is long, we will uniformly downsample the video to meet the frames when equal to the "max_frames".
max_frames = 100
# The number of frames retained per second in the video.
video_framerate = 1
# Input Text
qs = "Describe the video."
# Sampling Parameter
conv_mode = "simple"
temperature = 0.2
top_p = None
num_beams = 1
disable_torch_init()
model_path = os.path.expanduser(model_path)
model_name = "ChatUniVi"
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name)
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
if mm_use_im_patch_token:
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
if mm_use_im_start_end:
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
model.resize_token_embeddings(len(tokenizer))
vision_tower = model.get_vision_tower()
if not vision_tower.is_loaded:
vision_tower.load_model()
image_processor = vision_tower.image_processor
if model.config.config["use_cluster"]:
for n, m in model.named_modules():
m = m.to(dtype=torch.bfloat16)
# Check if the video exists
if video_path is not None:
video_frames, slice_len = _get_rawvideo_dec(video_path, image_processor, max_frames=max_frames, video_framerate=video_framerate)
cur_prompt = qs
if model.config.mm_use_im_start_end:
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN * slice_len + DEFAULT_IM_END_TOKEN + '\n' + qs
else:
qs = DEFAULT_IMAGE_TOKEN * slice_len + '\n' + qs
conv = conv_templates[conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(
0).cuda()
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=video_frames.half().cuda(),
do_sample=True,
temperature=temperature,
top_p=top_p,
num_beams=num_beams,
output_scores=True,
return_dict_in_generate=True,
max_new_tokens=1024,
use_cache=True,
stopping_criteria=[stopping_criteria])
output_ids = output_ids.sequences
input_token_len = input_ids.shape[1]
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
if n_diff_input_output > 0:
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
outputs = outputs.strip()
if outputs.endswith(stop_str):
outputs = outputs[:-len(stop_str)]
outputs = outputs.strip()
print(outputs)
import torch
import os
from ChatUniVi.constants import *
from ChatUniVi.conversation import conv_templates, SeparatorStyle
from ChatUniVi.model.builder import load_pretrained_model
from ChatUniVi.utils import disable_torch_init
from ChatUniVi.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
from PIL import Image
if __name__ == '__main__':
# Model Parameter
model_path = "Chat-UniVi/Chat-UniVi" # or "Chat-UniVi/Chat-UniVi-13B"、"Chat-UniVi/Chat-UniVi-v1.5"
image_path = ${image_path}
# Input Text
qs = "Describe the image."
# Sampling Parameter
conv_mode = "simple"
temperature = 0.2
top_p = None
num_beams = 1
disable_torch_init()
model_path = os.path.expanduser(model_path)
model_name = "ChatUniVi"
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name)
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
if mm_use_im_patch_token:
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
if mm_use_im_start_end:
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
model.resize_token_embeddings(len(tokenizer))
vision_tower = model.get_vision_tower()
if not vision_tower.is_loaded:
vision_tower.load_model()
image_processor = vision_tower.image_processor
# Check if the video exists
if image_path is not None:
cur_prompt = qs
if model.config.mm_use_im_start_end:
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
else:
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
conv = conv_templates[conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
image = Image.open(image_path)
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=image_tensor.unsqueeze(0).half().cuda(),
do_sample=True,
temperature=temperature,
top_p=top_p,
num_beams=num_beams,
max_new_tokens=1024,
use_cache=True,
stopping_criteria=[stopping_criteria])
input_token_len = input_ids.shape[1]
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
if n_diff_input_output > 0:
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
outputs = outputs.strip()
if outputs.endswith(stop_str):
outputs = outputs[:-len(stop_str)]
outputs = outputs.strip()
print(outputs)
- The data instruction is in DATA.md.
- The training instruction is in TRAIN_AND_VALIDATE.md.
- LLaVA The codebase we built upon and it is an efficient large language and vision assistant.
- Video-ChatGPT Great job contributing the evaluation code and dataset.
- Video-LLaVA This framework exhibits remarkable interactive capabilities between images and videos.
- The majority of this project is released under the Apache 2.0 license as found in the LICENSE file.
- The service is a research preview intended for non-commercial use only, subject to the model License of LLaMA, Terms of Use of the data generated by OpenAI, and Privacy Practices of ShareGPT. Please contact us if you find any potential violations.
If you find this paper useful, please consider staring 🌟 this repo and citing 📑 our paper:
@article{jin2023chatunivi,
title={Chat-UniVi: Unified Visual Representation Empowers Large Language Models with Image and Video Understanding},
author={Peng Jin and Ryuichi Takanobu and Caiwan Zhang and Xiaochun Cao and Li Yuan},
journal={arXiv preprint arXiv:2311.08046},
year={2023}
}