This dataset is used for ELM prediction, it is defined in dataset.yaml.
The notebook shots_overview.ipynb
sketches how the dataset is collected. This is forensic work
to reconstruct lost, prior knowledge. Using work from that notebook, I constructed the
definition of the dataset 'dataset.yaml'.
The definitions of the predictors are given in d3d_signals. This dataset uses some more signals than the D3D_100 dataset, such as fs07 (fitlerscope data) to construct the TTELM target (which is done in post-processing), and the pedestal info prmtan_xxxxx.
The TTELM target is calculated in post-processing.
This dataset contains over 43,000 shots. Not all signals are available for every shot.
The file download.py
will compile which signals could be successfully downloaded from D3D in
the csv file df_progress.csv through the use of a pandas dataframe.
The dataframe contains columns of shotnr and all the predictors in dataset.yaml
.
A true in a predictor column indicates that the signal is available in D3D MDS.
A false indicates that it is not available.
When building a dataset, only pick the shots that
have all requested predictors available. This can be done through the dataframe loaded in
verify_downloads.ipynb
, f.ex.:
df[(df["bmstinj"] == True) & (df["dusbradial"] == True)]
selects only the rows that have both, bmstinj
and dusbradial
.
Ge's code uses the routine find_elm_events_tar
, in the file find_elms.py
. Search for it:
[stellar]:/projects/FRNN/gdong-temp $ find . -type f -name "find_elms.py"
I used this notebook to visualize what it does. The TTELM is written into the shots hdf5 file,
located in datasets/XXXXXX.h5
in the group "target". This is done in generate_ttelm.py
and
executed in instantiate.sh
.
Below are notes how the original dataset has been reconstructed. These are working notes for the
notebook verify_downloads.ipynb
.
As a start, I'm looking at Ge's folder stellar:/projects/FRNN/gdong-temp/ELM/elm-d3d-data-fs07
The conf.yaml
lists the following folders to be parsed:
- /../../../tigress/FRNN/signal_data_ipsip/
- /../../../tigress/FRNN/signal_data_new_nov2019/
- /../../../tigress/FRNN/signal_data_new_2020/
- /../../../tigress/FRNN/signal_data_new_REAL_TIME/
- /../../../tigress/FRNN/signal_data/
The contents of these folders are the following:
- signal_data_ipsip - A folder of 40837 txt files, one for each shot
- signal_data_new_nov2019 - A folder with with subfolders
[rkube@stellar-intel FRNN]$ tree -d signal_data_new_nov2019/
signal_data_new_nov2019/
└── d3d
├── bmspinj
├── bmstinj
├── \bol_l03_p
├── \bol_l15_p
├── dssdenest
├── dusbradial
├── EFIT01
│ └── RESULTS.AEQDSK.Q95
├── EFITRT1
│ └── RESULTS.AEQDSK.Q95
├── efsbetan
├── efsli
├── efswmhd
├── ELECTRONS
│ ├── test_ne
│ ├── test_te
│ ├── TS.BLESSED.CORE.DENSITY
│ └── TS.BLESSED.CORE.TEMP
├── ipeecoil
├── ipsiptargt
├── ipspr15V
├── iptdirect
├── mhd
│ └── mirnov.n1rms
└── ZIPFIT01
├── PROFILES.EDENSFIT
├── PROFILES.ETEMPFIT
├── PROFILES.ITEMPFIT
└── PROFILES.ZDENSFIT
30 directories
- signal_data_new_2020/
[rkube@stellar-intel FRNN]$ tree -d signal_data_new_2020/
signal_data_new_2020/
└── d3d
├── dusbradial
├── fs07
├── prmtan_neped
├── prmtan_newid
├── prmtan_peped
├── prmtan_teped
└── prmtan_tewid
8 directories
- signal_data
signal_data
├── d3d
│ ├── bmspinj
│ ├── bmstinj
│ ├── \bol_l03_p
│ ├── \bol_l15_p
│ ├── dssdenest
│ ├── dusbradial
│ ├── EFIT01
│ │ ├── RESULTS.AEQDSK.Q95
│ │ └── RESULTS.GEQDSK.QPSI
│ ├── efsbetan
│ ├── efsli
│ ├── efswmhd
│ ├── ipeecoil
│ ├── ipsip
│ ├── ipsiptargt
│ ├── ipspr15V
│ ├── iptdirect
│ ├── nssampn1l
│ ├── nssampn2l
│ ├── nssfrqn1l
│ ├── nssfrqn2l
│ ├── RF
│ │ └── ECH.TOTAL.ECHPWRC
│ └── ZIPFIT01
│ ├── PROFILES.BOOTSTRAP.JBS_SAUTER
│ ├── PROFILES.BOOTSTRAP.QRHO
│ ├── PROFILES.EDENSFIT
│ ├── PROFILES.ETEMPFIT
│ ├── PROFILES.ITEMPFIT
│ ├── PROFILES.NEUTFIT
│ ├── PROFILES.PTHMFIT
│ ├── PROFILES.TROTFIT
│ └── PROFILES.ZDENSFIT
├── jet
│ ├── jpf
│ │ ├── da
[...]
There is a lot of D3D data and also some jet data.