-
Notifications
You must be signed in to change notification settings - Fork 1.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[LITE][NPU] Add layer_norm op bridge (#2767)
- Loading branch information
1 parent
c0af965
commit 2ac5fe3
Showing
7 changed files
with
183 additions
and
10 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,168 @@ | ||
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include "lite/kernels/npu/bridges/graph.h" | ||
#include "lite/kernels/npu/bridges/registry.h" | ||
#include "lite/kernels/npu/bridges/utility.h" | ||
|
||
namespace paddle { | ||
namespace lite { | ||
namespace subgraph { | ||
namespace npu { | ||
|
||
int LayerNormConverter(void* ctx, OpLite* op, KernelBase* kernel) { | ||
CHECK(ctx != nullptr); | ||
CHECK(op != nullptr); | ||
auto graph = static_cast<Graph*>(ctx); | ||
auto op_info = op->op_info(); | ||
auto op_type = op_info->Type(); | ||
auto scope = op->scope(); | ||
VLOG(3) << "[NPU] Converting " + op_type + "..."; | ||
|
||
// Get input and output vars and op attributes | ||
auto x_name = op_info->Input("X").front(); | ||
auto x_type = kernel->GetInputDeclType("X"); | ||
CHECK(x_type->precision() == PRECISION(kFloat)); | ||
CHECK(x_type->layout() == DATALAYOUT(kNCHW)); | ||
auto x = scope->FindMutableTensor(x_name); | ||
auto x_dims = x->dims(); | ||
auto padded_x_shape = CvtShape(x_dims); | ||
auto x_rank = static_cast<int>(x_dims.size()); | ||
CHECK(x_rank >= 2 && x_rank <= 4); | ||
|
||
auto y_name = op_info->Output("Y").front(); | ||
auto y_type = kernel->GetOutputDeclType("Y"); | ||
CHECK(y_type->precision() == PRECISION(kFloat)); | ||
CHECK(y_type->layout() == DATALAYOUT(kNCHW)); | ||
auto y = scope->FindMutableTensor(y_name); | ||
auto y_dims = y->dims(); | ||
auto padded_y_shape = CvtShape(y_dims); | ||
|
||
auto epsilon = op_info->GetAttr<float>("epsilon"); | ||
auto begin_norm_axis = op_info->GetAttr<int>("begin_norm_axis"); | ||
if (begin_norm_axis < 0) { | ||
begin_norm_axis += x_rank; | ||
} | ||
CHECK(begin_norm_axis >= 1 && begin_norm_axis < x_rank); | ||
auto x_mat_dims = x_dims.Flatten2D(begin_norm_axis); | ||
auto left = x_mat_dims[0]; | ||
auto right = x_mat_dims[1]; | ||
|
||
// X node | ||
std::shared_ptr<Node> x_node = nullptr; | ||
if (graph->Has(x_name)) { | ||
x_node = graph->Get(x_name); | ||
} else { | ||
x_node = graph->Add(x_name, *x, padded_x_shape); | ||
} | ||
|
||
// Reshaped X node if needs | ||
bool reshape = false; | ||
if (!(x_rank == 4 && begin_norm_axis == 1)) { | ||
reshape = true; | ||
// Only the input shape 4-D(n, c, h, w) and axis=1 is supported | ||
// by HiAI DDK, So the input shape need to be padded to 4-D if it is less | ||
// than 4 or axis!=1. For example: | ||
// (1) (n, c, h, w), axis=1 -> no need | ||
// (2) (n, c, h, w), axis=2 -> (n * c, h, w, 1) | ||
// (3) (n, c, h, w), axis=3 -> (n * c * h, w, 1) | ||
// (4) (n, h, w), axis=1 -> (n, h, w, 1) | ||
// (5) (n, h, w), axis=2 -> (n * h, w, 1, 1) | ||
// (6) (h, w), axis=1 -> (h, w, 1, 1) | ||
padded_x_shape = {left}; | ||
for (int i = begin_norm_axis; i < x_rank; i++) { | ||
padded_x_shape.push_back(x_dims[i]); | ||
} | ||
auto remain = 4 - padded_x_shape.size(); | ||
for (int i = 0; i < remain; i++) { | ||
padded_x_shape.push_back(1); | ||
} | ||
auto reshaped_x_node = graph->Add<ge::op::Reshape>( | ||
x_name + "/reshape", x_node->precision(), x_node->layout()); | ||
auto reshaped_x_op = reshaped_x_node->data<ge::op::Reshape>(); | ||
reshaped_x_op->set_input_tensor(*x_node->data()); | ||
reshaped_x_op->set_attr_shape(padded_x_shape); | ||
x_node = reshaped_x_node; | ||
} | ||
|
||
// Bias node | ||
auto scale_bias_dims = | ||
DDim({1, padded_x_shape[1], padded_x_shape[2], padded_x_shape[3]}); | ||
std::shared_ptr<Node> bias_node = nullptr; | ||
if (HasInputArg(op_info, scope, "Bias")) { | ||
auto bias_name = op_info->Input("Bias").front(); | ||
auto bias_type = kernel->GetInputDeclType("Bias"); | ||
CHECK(bias_type->precision() == PRECISION(kFloat)); | ||
CHECK(bias_type->layout() == DATALAYOUT(kNCHW)); | ||
auto bias = scope->FindMutableTensor(bias_name); | ||
auto bias_dims = bias->dims(); | ||
CHECK_EQ(bias_dims.size(), 1); | ||
CHECK_EQ(bias_dims.production(), right); | ||
if (!bias->persistable()) { | ||
LOG(WARNING) << "[NPU] Only supporting persistable bias tensor."; | ||
return FAILED; | ||
} | ||
bias_node = graph->Add(bias_name, *bias, scale_bias_dims); | ||
} else { | ||
bias_node = graph->Add(y_name + "/bias", 0.0f, scale_bias_dims); | ||
} | ||
|
||
// Scale node | ||
std::shared_ptr<Node> scale_node = nullptr; | ||
if (HasInputArg(op_info, scope, "Scale")) { | ||
auto scale_name = op_info->Input("Scale").front(); | ||
auto scale_type = kernel->GetInputDeclType("Scale"); | ||
CHECK(scale_type->precision() == PRECISION(kFloat)); | ||
CHECK(scale_type->layout() == DATALAYOUT(kNCHW)); | ||
auto scale = scope->FindMutableTensor(scale_name); | ||
auto scale_dims = scale->dims(); | ||
CHECK_EQ(scale_dims.size(), 1); | ||
CHECK_EQ(scale_dims.production(), right); | ||
if (!scale->persistable()) { | ||
LOG(WARNING) << "[NPU] Only supporting persistable scale tensor."; | ||
return FAILED; | ||
} | ||
scale_node = graph->Add(scale_name, *scale, scale_bias_dims); | ||
} else { | ||
scale_node = graph->Add(y_name + "/scale", 1.0f, scale_bias_dims); | ||
} | ||
|
||
// LayerNorm node | ||
auto layer_norm_node = graph->Add<ge::op::InstanceNorm>(y_name); | ||
auto layer_norm_op = layer_norm_node->data<ge::op::InstanceNorm>(); | ||
layer_norm_op->set_input_x(*x_node->data()); | ||
layer_norm_op->set_input_scale(*scale_node->data()); | ||
layer_norm_op->set_input_bias(*bias_node->data()); | ||
layer_norm_op->set_attr_reduction_indices(ge::AttrValue::LIST_INT({3})); | ||
layer_norm_op->set_attr_epsilon(epsilon); | ||
|
||
// Reshaped Y node if needs | ||
if (reshape) { | ||
auto reshaped_y_node = graph->Add<ge::op::Reshape>( | ||
y_name, layer_norm_node->precision(), layer_norm_node->layout()); | ||
auto reshaped_y_op = reshaped_y_node->data<ge::op::Reshape>(); | ||
reshaped_y_op->set_input_tensor(*layer_norm_node->data()); | ||
reshaped_y_op->set_attr_shape(padded_y_shape); | ||
} | ||
return REBUILD_WHEN_SHAPE_CHANGED; | ||
} | ||
|
||
} // namespace npu | ||
} // namespace subgraph | ||
} // namespace lite | ||
} // namespace paddle | ||
|
||
REGISTER_SUBGRAPH_BRIDGE(layer_norm, | ||
kNPU, | ||
paddle::lite::subgraph::npu::LayerNormConverter); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters