Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[LITE][NPU] Add layer_norm op bridge #2767

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions lite/kernels/npu/bridges/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,7 @@ lite_cc_library(subgraph_bridge_unsqueeze_op_npu SRCS unsqueeze_op.cc DEPS ${npu
lite_cc_library(subgraph_bridge_argmax_op_npu SRCS argmax_op.cc DEPS ${npu_subgraph_bridge_deps})
lite_cc_library(subgraph_bridge_instance_norm_op_npu SRCS instance_norm_op.cc DEPS ${npu_subgraph_bridge_deps})
lite_cc_library(subgraph_bridge_dropout_op_npu SRCS dropout_op.cc DEPS ${npu_subgraph_bridge_deps})
lite_cc_library(subgraph_bridge_layer_norm_op_npu SRCS layer_norm_op.cc DEPS ${npu_subgraph_bridge_deps})

set(npu_subgraph_bridges
subgraph_bridge_registry
Expand Down Expand Up @@ -71,6 +72,7 @@ set(npu_subgraph_bridges
subgraph_bridge_argmax_op_npu
subgraph_bridge_instance_norm_op_npu
subgraph_bridge_dropout_op_npu
subgraph_bridge_layer_norm_op_npu
CACHE INTERNAL "npu_subgraph_bridges")

message(STATUS "+++++ npu_subgraph_bridges: ${npu_subgraph_bridges}")
7 changes: 3 additions & 4 deletions lite/kernels/npu/bridges/instance_norm_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -82,7 +82,7 @@ int InstanceNormConverter(void* ctx, OpLite* op, KernelBase* kernel) {
} else {
if (!bias->persistable()) {
LOG(WARNING) << "[NPU] Only supporting persistable bias tensor.";
bias->set_persistable(true);
return FAILED;
}
bias_node = graph->Add(bias_name, *bias, scale_bias_dims);
}
Expand All @@ -108,7 +108,7 @@ int InstanceNormConverter(void* ctx, OpLite* op, KernelBase* kernel) {
CHECK_EQ(channel_size, scale_dims.production());
if (!scale->persistable()) {
LOG(WARNING) << "[NPU] Only supporting persistable scale tensor.";
scale->set_persistable(true);
return FAILED;
}
scale_node = graph->Add(scale_name, *scale, scale_bias_dims);
} else {
Expand All @@ -121,8 +121,7 @@ int InstanceNormConverter(void* ctx, OpLite* op, KernelBase* kernel) {
instance_norm_op->set_input_x(*x_node->data());
instance_norm_op->set_input_scale(*scale_node->data());
instance_norm_op->set_input_bias(*bias_node->data());
instance_norm_op->set_attr_reduction_indices(
ge::AttrValue::LIST_INT({0, 1, 2}));
instance_norm_op->set_attr_reduction_indices(ge::AttrValue::LIST_INT({2}));
instance_norm_op->set_attr_epsilon(epsilon);
return SUCCESS;
}
Expand Down
168 changes: 168 additions & 0 deletions lite/kernels/npu/bridges/layer_norm_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,168 @@
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/npu/bridges/graph.h"
#include "lite/kernels/npu/bridges/registry.h"
#include "lite/kernels/npu/bridges/utility.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace npu {

int LayerNormConverter(void* ctx, OpLite* op, KernelBase* kernel) {
CHECK(ctx != nullptr);
CHECK(op != nullptr);
auto graph = static_cast<Graph*>(ctx);
auto op_info = op->op_info();
auto op_type = op_info->Type();
auto scope = op->scope();
VLOG(3) << "[NPU] Converting " + op_type + "...";

// Get input and output vars and op attributes
auto x_name = op_info->Input("X").front();
auto x_type = kernel->GetInputDeclType("X");
CHECK(x_type->precision() == PRECISION(kFloat));
CHECK(x_type->layout() == DATALAYOUT(kNCHW));
auto x = scope->FindMutableTensor(x_name);
auto x_dims = x->dims();
auto padded_x_shape = CvtShape(x_dims);
auto x_rank = static_cast<int>(x_dims.size());
CHECK(x_rank >= 2 && x_rank <= 4);

auto y_name = op_info->Output("Y").front();
auto y_type = kernel->GetOutputDeclType("Y");
CHECK(y_type->precision() == PRECISION(kFloat));
CHECK(y_type->layout() == DATALAYOUT(kNCHW));
auto y = scope->FindMutableTensor(y_name);
auto y_dims = y->dims();
auto padded_y_shape = CvtShape(y_dims);

auto epsilon = op_info->GetAttr<float>("epsilon");
auto begin_norm_axis = op_info->GetAttr<int>("begin_norm_axis");
if (begin_norm_axis < 0) {
begin_norm_axis += x_rank;
}
CHECK(begin_norm_axis >= 1 && begin_norm_axis < x_rank);
auto x_mat_dims = x_dims.Flatten2D(begin_norm_axis);
auto left = x_mat_dims[0];
auto right = x_mat_dims[1];

// X node
std::shared_ptr<Node> x_node = nullptr;
if (graph->Has(x_name)) {
x_node = graph->Get(x_name);
} else {
x_node = graph->Add(x_name, *x, padded_x_shape);
}

// Reshaped X node if needs
bool reshape = false;
if (!(x_rank == 4 && begin_norm_axis == 1)) {
reshape = true;
// Only the input shape 4-D(n, c, h, w) and axis=1 is supported
// by HiAI DDK, So the input shape need to be padded to 4-D if it is less
// than 4 or axis!=1. For example:
// (1) (n, c, h, w), axis=1 -> no need
// (2) (n, c, h, w), axis=2 -> (n * c, h, w, 1)
// (3) (n, c, h, w), axis=3 -> (n * c * h, w, 1)
// (4) (n, h, w), axis=1 -> (n, h, w, 1)
// (5) (n, h, w), axis=2 -> (n * h, w, 1, 1)
// (6) (h, w), axis=1 -> (h, w, 1, 1)
padded_x_shape = {left};
for (int i = begin_norm_axis; i < x_rank; i++) {
padded_x_shape.push_back(x_dims[i]);
}
auto remain = 4 - padded_x_shape.size();
for (int i = 0; i < remain; i++) {
padded_x_shape.push_back(1);
}
auto reshaped_x_node = graph->Add<ge::op::Reshape>(
x_name + "/reshape", x_node->precision(), x_node->layout());
auto reshaped_x_op = reshaped_x_node->data<ge::op::Reshape>();
reshaped_x_op->set_input_tensor(*x_node->data());
reshaped_x_op->set_attr_shape(padded_x_shape);
x_node = reshaped_x_node;
}

// Bias node
auto scale_bias_dims =
DDim({1, padded_x_shape[1], padded_x_shape[2], padded_x_shape[3]});
std::shared_ptr<Node> bias_node = nullptr;
if (HasInputArg(op_info, scope, "Bias")) {
auto bias_name = op_info->Input("Bias").front();
auto bias_type = kernel->GetInputDeclType("Bias");
CHECK(bias_type->precision() == PRECISION(kFloat));
CHECK(bias_type->layout() == DATALAYOUT(kNCHW));
auto bias = scope->FindMutableTensor(bias_name);
auto bias_dims = bias->dims();
CHECK_EQ(bias_dims.size(), 1);
CHECK_EQ(bias_dims.production(), right);
if (!bias->persistable()) {
LOG(WARNING) << "[NPU] Only supporting persistable bias tensor.";
return FAILED;
}
bias_node = graph->Add(bias_name, *bias, scale_bias_dims);
} else {
bias_node = graph->Add(y_name + "/bias", 0.0f, scale_bias_dims);
}

// Scale node
std::shared_ptr<Node> scale_node = nullptr;
if (HasInputArg(op_info, scope, "Scale")) {
auto scale_name = op_info->Input("Scale").front();
auto scale_type = kernel->GetInputDeclType("Scale");
CHECK(scale_type->precision() == PRECISION(kFloat));
CHECK(scale_type->layout() == DATALAYOUT(kNCHW));
auto scale = scope->FindMutableTensor(scale_name);
auto scale_dims = scale->dims();
CHECK_EQ(scale_dims.size(), 1);
CHECK_EQ(scale_dims.production(), right);
if (!scale->persistable()) {
LOG(WARNING) << "[NPU] Only supporting persistable scale tensor.";
return FAILED;
}
scale_node = graph->Add(scale_name, *scale, scale_bias_dims);
} else {
scale_node = graph->Add(y_name + "/scale", 1.0f, scale_bias_dims);
}

// LayerNorm node
auto layer_norm_node = graph->Add<ge::op::InstanceNorm>(y_name);
auto layer_norm_op = layer_norm_node->data<ge::op::InstanceNorm>();
layer_norm_op->set_input_x(*x_node->data());
layer_norm_op->set_input_scale(*scale_node->data());
layer_norm_op->set_input_bias(*bias_node->data());
layer_norm_op->set_attr_reduction_indices(ge::AttrValue::LIST_INT({3}));
layer_norm_op->set_attr_epsilon(epsilon);

// Reshaped Y node if needs
if (reshape) {
auto reshaped_y_node = graph->Add<ge::op::Reshape>(
y_name, layer_norm_node->precision(), layer_norm_node->layout());
auto reshaped_y_op = reshaped_y_node->data<ge::op::Reshape>();
reshaped_y_op->set_input_tensor(*layer_norm_node->data());
reshaped_y_op->set_attr_shape(padded_y_shape);
}
return REBUILD_WHEN_SHAPE_CHANGED;
}

} // namespace npu
} // namespace subgraph
} // namespace lite
} // namespace paddle

REGISTER_SUBGRAPH_BRIDGE(layer_norm,
kNPU,
paddle::lite::subgraph::npu::LayerNormConverter);
1 change: 1 addition & 0 deletions lite/kernels/npu/bridges/paddle_use_bridges.h
Original file line number Diff line number Diff line change
Expand Up @@ -55,3 +55,4 @@ USE_SUBGRAPH_BRIDGE(transpose2, kNPU);
USE_SUBGRAPH_BRIDGE(unsqueeze, kNPU);
USE_SUBGRAPH_BRIDGE(unsqueeze2, kNPU);
USE_SUBGRAPH_BRIDGE(instance_norm, kNPU);
USE_SUBGRAPH_BRIDGE(layer_norm, kNPU);
2 changes: 1 addition & 1 deletion lite/tests/kernels/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ if((NOT LITE_WITH_OPENCL AND NOT LITE_WITH_FPGA) AND (LITE_WITH_X86 OR LITE_WITH
lite_cc_test(test_concat_compute SRCS concat_compute_test.cc DEPS arena_framework ${x86_kernels} ${cuda_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
lite_cc_test(test_kernel_transpose_compute SRCS transpose_compute_test.cc DEPS arena_framework ${xpu_kernels} ${npu_kernels} ${x86_kernels} ${cuda_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
lite_cc_test(test_kernel_reshape_compute SRCS reshape_compute_test.cc DEPS arena_framework ${xpu_kernels} ${npu_kernels} ${x86_kernels} ${cuda_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
lite_cc_test(test_kernel_layer_norm_compute SRCS layer_norm_compute_test.cc DEPS arena_framework ${xpu_kernels} ${x86_kernels} ${cuda_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
lite_cc_test(test_kernel_layer_norm_compute SRCS layer_norm_compute_test.cc DEPS arena_framework ${xpu_kernels} ${npu_kernels} ${x86_kernels} ${cuda_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
lite_cc_test(test_kernel_dropout_compute SRCS dropout_compute_test.cc DEPS arena_framework ${xpu_kernels} ${npu_kernels} ${x86_kernels} ${cuda_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
lite_cc_test(test_kernel_softmax_compute SRCS softmax_compute_test.cc DEPS arena_framework ${xpu_kernels} ${npu_kernels} ${x86_kernels} ${cuda_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
lite_cc_test(test_kernel_mul_compute SRCS mul_compute_test.cc DEPS arena_framework ${xpu_kernels} ${x86_kernels} ${cuda_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
Expand Down
4 changes: 2 additions & 2 deletions lite/tests/kernels/instance_norm_compute_test.cc
Original file line number Diff line number Diff line change
Expand Up @@ -122,8 +122,8 @@ class InstanceNormComputeTest : public arena::TestCase {
fill_data_rand(bias.data(), -1.f, 1.f, scale_bias_dims.production());

SetCommonTensor(x_, dims_, x.data());
SetCommonTensor(scale_, scale_bias_dims, scale.data());
SetCommonTensor(bias_, scale_bias_dims, bias.data());
SetCommonTensor(scale_, scale_bias_dims, scale.data(), {}, true);
SetCommonTensor(bias_, scale_bias_dims, bias.data(), {}, true);
}
};

Expand Down
9 changes: 6 additions & 3 deletions lite/tests/kernels/layer_norm_compute_test.cc
Original file line number Diff line number Diff line change
Expand Up @@ -132,13 +132,13 @@ class LayerNormComputeTest : public arena::TestCase {
DDim scale_dims({scale_bias_size});
std::vector<float> scale(scale_bias_size);
fill_data_rand(scale.data(), -1.f, 1.f, scale_bias_size);
SetCommonTensor(scale_, scale_dims, scale.data());
SetCommonTensor(scale_, scale_dims, scale.data(), {}, true);
}
if (has_bias_) {
DDim bias_dims({scale_bias_size});
std::vector<float> bias(scale_bias_size);
fill_data_rand(bias.data(), -1.f, 1.f, scale_bias_size);
SetCommonTensor(bias_, bias_dims, bias.data());
SetCommonTensor(bias_, bias_dims, bias.data(), {}, true);
}
}
};
Expand All @@ -149,6 +149,9 @@ TEST(LayerNorm, precision) {
Place place;
#if defined(LITE_WITH_XPU)
place = TARGET(kXPU);
#elif defined(LITE_WITH_NPU)
place = TARGET(kNPU);
abs_error = 1e-2;
#elif defined(LITE_WITH_ARM)
place = TARGET(kARM);
abs_error = 6e-5;
Expand All @@ -157,7 +160,7 @@ TEST(LayerNorm, precision) {
#endif

for (auto dims :
std::vector<std::vector<int64_t>>{{1, 2, 3, 4}, {2, 3, 4}, {3, 4}}) {
std::vector<std::vector<int64_t>>{{2, 3, 4, 5}, {3, 4, 5}, {4, 5}}) {
for (auto epsilon : {1e-5f}) {
for (auto axis : {1, 2, 3}) {
for (bool has_bias : {true, false}) {
Expand Down