Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[arm] add fc+relu6 pass support #8755

Merged
merged 7 commits into from
Apr 12, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion docs/quick_start/faq.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,8 @@
答:更换当前 Paddle Lite 预测库为带 `with_extra = ON` 标签的预编译库。

3、ARM CPU 端多线程支持情况,某些case下,多线程没有效果?
答:gcc 编译模式下,V7/V8 多线程均支持;clang 编译模式下,V8 支持多线程,V7 只能跑单线程

答:gcc 编译模式下,V7/V8 多线程均支持;clang 编译模式下,V8 支持多线程,V7 只支持单线程

### 模型转换

Expand Down
184 changes: 104 additions & 80 deletions lite/backends/arm/math/fp16/funcs_fp16.cc
Original file line number Diff line number Diff line change
Expand Up @@ -21,106 +21,122 @@ namespace arm {
namespace math {
namespace fp16 {

#define LOADA_DATA_32 \
float16x8_t vin1 = vld1q_f16(ptr_out); \
float16x8_t vb1 = vld1q_f16(ptr_bias); \
float16x8_t vin2 = vld1q_f16(ptr_out + 8); \
float16x8_t vb2 = vld1q_f16(ptr_bias + 8); \
float16x8_t vin3 = vld1q_f16(ptr_out + 16); \
float16x8_t vb3 = vld1q_f16(ptr_bias + 16); \
float16x8_t vin4 = vld1q_f16(ptr_out + 24); \
float16x8_t vb4 = vld1q_f16(ptr_bias + 24); \
float16x8_t vout1 = vaddq_f16(vin1, vb1); \
float16x8_t vout2 = vaddq_f16(vin2, vb2); \
float16x8_t vout3 = vaddq_f16(vin3, vb3); \
float16x8_t vout4 = vaddq_f16(vin4, vb4);
#define RELU_32 \
vout1 = vmaxq_f16(vout1, vzero); \
vout2 = vmaxq_f16(vout2, vzero); \
vout3 = vmaxq_f16(vout3, vzero); \
vout4 = vmaxq_f16(vout4, vzero);
#define RELU6_32 \
vout1 = vminq_f16(vout1, valpha); \
vout2 = vminq_f16(vout2, valpha); \
vout3 = vminq_f16(vout3, valpha); \
vout4 = vminq_f16(vout4, valpha);
#define STORE_32 \
vst1q_f16(ptr_out, vout1); \
vst1q_f16(ptr_out + 8, vout2); \
vst1q_f16(ptr_out + 16, vout3); \
vst1q_f16(ptr_out + 24, vout4); \
ptr_out += 32; \
ptr_bias += 32;
#define LOADA_DATA_8 \
float16x8_t vin1 = vld1q_f16(ptr_out); \
float16x8_t vb1 = vld1q_f16(ptr_bias); \
float16x8_t vout1 = vaddq_f16(vin1, vb1);
#define RELU_8 vout1 = vmaxq_f16(vout1, vzero);
#define RELU6_8 vout1 = vminq_f16(vout1, valpha);
#define STORE_8 \
vst1q_f16(ptr_out, vout1); \
ptr_out += 8; \
ptr_bias += 8;

template <>
void fill_bias_fc<float16_t>(float16_t *out,
const float16_t *bias,
int num,
int channel,
bool flag_relu) {
const operators::ActivationParam *act_param) {
int cnt = channel >> 5;
int remain = channel & 31;
int cnt_num = remain >> 3;
int cnt_rem = remain & 7;
if (flag_relu) {
if (act_param != nullptr && act_param->has_active) {
float16x8_t vzero = vdupq_n_f16(0.f);
for (int j = 0; j < num; ++j) {
const float16_t *ptr_bias = bias;
float16_t *ptr_out = out + j * channel;

for (int i = 0; i < cnt; ++i) {
float16x8_t vin1 = vld1q_f16(ptr_out);
float16x8_t vb1 = vld1q_f16(ptr_bias);

float16x8_t vin2 = vld1q_f16(ptr_out + 8);
float16x8_t vb2 = vld1q_f16(ptr_bias + 8);

float16x8_t vin3 = vld1q_f16(ptr_out + 16);
float16x8_t vb3 = vld1q_f16(ptr_bias + 16);

float16x8_t vin4 = vld1q_f16(ptr_out + 24);
float16x8_t vb4 = vld1q_f16(ptr_bias + 24);

float16x8_t vout1 = vaddq_f16(vin1, vb1);
float16x8_t vout2 = vaddq_f16(vin2, vb2);
float16x8_t vout3 = vaddq_f16(vin3, vb3);
float16x8_t vout4 = vaddq_f16(vin4, vb4);

vout1 = vmaxq_f16(vout1, vzero);
vout2 = vmaxq_f16(vout2, vzero);
vout3 = vmaxq_f16(vout3, vzero);
vout4 = vmaxq_f16(vout4, vzero);

vst1q_f16(ptr_out, vout1);
vst1q_f16(ptr_out + 8, vout2);
vst1q_f16(ptr_out + 16, vout3);
vst1q_f16(ptr_out + 24, vout4);

ptr_out += 32;
ptr_bias += 32;
if (act_param->active_type == lite_api::ActivationType::kRelu) {
for (int j = 0; j < num; ++j) {
const float16_t *ptr_bias = bias;
float16_t *ptr_out = out + j * channel;

for (int i = 0; i < cnt; ++i) {
LOADA_DATA_32
RELU_32
STORE_32
}
for (int i = 0; i < cnt_num; i++) {
LOADA_DATA_8
RELU_8
STORE_8
}
for (int i = 0; i < cnt_rem; ++i) {
*ptr_out += *(ptr_bias++);
*ptr_out = *ptr_out > 0.f ? *ptr_out : 0.f;
ptr_out++;
}
}
for (int i = 0; i < cnt_num; i++) {
float16x8_t vin1 = vld1q_f16(ptr_out);
float16x8_t vb1 = vld1q_f16(ptr_bias);
float16x8_t vout1 = vaddq_f16(vin1, vb1);
vout1 = vmaxq_f16(vout1, vzero);
vst1q_f16(ptr_out, vout1);
ptr_out += 8;
ptr_bias += 8;
}
for (int i = 0; i < cnt_rem; ++i) {
*ptr_out += *(ptr_bias++);
*ptr_out = *ptr_out > 0.f ? *ptr_out : 0.f;
ptr_out++;
} else if (act_param->active_type == lite_api::ActivationType::kRelu6) {
float16_t alpha = static_cast<float16_t>(act_param->Relu_clipped_coef);
float16x8_t valpha = vdupq_n_f16(alpha);
for (int j = 0; j < num; ++j) {
const float16_t *ptr_bias = bias;
float16_t *ptr_out = out + j * channel;

for (int i = 0; i < cnt; ++i) {
LOADA_DATA_32
RELU_32
RELU6_32
STORE_32
}
for (int i = 0; i < cnt_num; i++) {
LOADA_DATA_8
RELU_8
RELU6_8
STORE_8
}
for (int i = 0; i < cnt_rem; ++i) {
*ptr_out += *(ptr_bias++);
*ptr_out =
*ptr_out > 0.f ? ((*ptr_out < alpha) ? *ptr_out : alpha) : 0.f;
ptr_out++;
}
}
} else {
LOG(FATAL) << "This act_type: "
<< static_cast<int>(act_param->active_type)
<< " doesn't support";
}
} else {
for (int j = 0; j < num; ++j) {
const float16_t *ptr_bias = bias;
float16_t *ptr_out = out + j * channel;

for (int i = 0; i < cnt; ++i) {
float16x8_t vin1 = vld1q_f16(ptr_out);
float16x8_t vb1 = vld1q_f16(ptr_bias);

float16x8_t vin2 = vld1q_f16(ptr_out + 8);
float16x8_t vb2 = vld1q_f16(ptr_bias + 8);

float16x8_t vin3 = vld1q_f16(ptr_out + 16);
float16x8_t vb3 = vld1q_f16(ptr_bias + 16);

float16x8_t vin4 = vld1q_f16(ptr_out + 24);
float16x8_t vb4 = vld1q_f16(ptr_bias + 24);

float16x8_t vout1 = vaddq_f16(vin1, vb1);
float16x8_t vout2 = vaddq_f16(vin2, vb2);
float16x8_t vout3 = vaddq_f16(vin3, vb3);
float16x8_t vout4 = vaddq_f16(vin4, vb4);

vst1q_f16(ptr_out, vout1);
vst1q_f16(ptr_out + 8, vout2);
vst1q_f16(ptr_out + 16, vout3);
vst1q_f16(ptr_out + 24, vout4);

ptr_out += 32;
ptr_bias += 32;
LOADA_DATA_32
STORE_32
}
for (int i = 0; i < cnt_num; i++) {
float16x8_t vin1 = vld1q_f16(ptr_out);
float16x8_t vb1 = vld1q_f16(ptr_bias);
float16x8_t vout1 = vaddq_f16(vin1, vb1);
vst1q_f16(ptr_out, vout1);
ptr_out += 8;
ptr_bias += 8;
LOADA_DATA_8
STORE_8
}
for (int i = 0; i < cnt_rem; ++i) {
*ptr_out += *(ptr_bias++);
Expand All @@ -129,6 +145,14 @@ void fill_bias_fc<float16_t>(float16_t *out,
}
}
}
#undef LOADA_DATA_32
#undef RELU_32
#undef RELU6_32
#undef STORE_32
#undef LOADA_DATA_8
#undef RELU_8
#undef RELU6_8
#undef STORE_8

} // namespace fp16
} // namespace math
Expand Down
7 changes: 5 additions & 2 deletions lite/backends/arm/math/fp16/funcs_fp16.h
100755 → 100644
Original file line number Diff line number Diff line change
Expand Up @@ -44,8 +44,11 @@ namespace math {
namespace fp16 {

template <typename T>
void fill_bias_fc(
T* tensor, const T* bias, int num, int channel, bool flag_relu);
void fill_bias_fc(T* tensor,
const T* bias,
int num,
int channel,
const operators::ActivationParam* act_param);

// exp() computed for 8 float at once
inline float16x8_t expq_ps_f16(float16x8_t x) {
Expand Down
Loading