Skip to content

Commit

Permalink
Merge pull request #2282 from hedaoyuan/convolution
Browse files Browse the repository at this point in the history
Add convolution Function
  • Loading branch information
hedaoyuan authored Jun 19, 2017
2 parents 1a12720 + 9c47c42 commit 17fe832
Show file tree
Hide file tree
Showing 26 changed files with 1,516 additions and 524 deletions.
4 changes: 3 additions & 1 deletion paddle/function/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -14,8 +14,8 @@ add_library(paddle_function STATIC ${cpp_files} ${cu_objs})
add_dependencies(paddle_function ${external_project_dependencies})
add_dependencies(paddle_function gen_proto_cpp)

if(WITH_GPU)
if(WITH_TESTING)
if(WITH_GPU)
# TODO:
# file(GLOB test_files . *OpTest.cpp)
# add_executable(${test_bin} EXCLUDE_FROM_ALL ${test_files})
Expand All @@ -30,6 +30,8 @@ if(WITH_TESTING)
add_simple_unittest(CosSimOpTest)
add_simple_unittest(RowConvOpTest)
endif()

add_simple_unittest(ConvOpTest)
endif()

add_style_check_target(paddle_function ${h_files})
Expand Down
4 changes: 2 additions & 2 deletions paddle/function/ContextProjectionOpTest.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ void testMatrixProjectionForward(int context_start,
std::max(0, (int)(context_start + context_length - 1));
if (pad == 0) is_padding = false;

FunctionCompare test(
CpuGpuFuncCompare test(
"ContextProjectionForward",
FuncConfig()
.set("context_length", context_length)
Expand Down Expand Up @@ -60,7 +60,7 @@ void testMatrixProjectionBackward(int context_start,
std::max(0, (int)(context_start + context_length - 1));
if (pad == 0) is_padding = false;

FunctionCompare test(
CpuGpuFuncCompare test(
"ContextProjectionBackward",
FuncConfig()
.set("context_length", context_length)
Expand Down
146 changes: 146 additions & 0 deletions paddle/function/ConvOp.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,146 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "Function.h"

namespace paddle {

/*
* \brief Based on the ConvFunctionBase class, the forward calculation,
* backward input calculation and backward filter calculation
* of convolution operations can be implemented.
*
* Arguments of forward and backward calculation:
* 1. Forward calculation of convolution.
* inputs = {INPUT, FILTER}, outputs = {OUTPUT}
* The first and second input arguments are input image and filter data.
* The output argument is output image.
*
* 2. Backward input calculation of convolution.
* inputs = {OUTPUT_GRAD, FILTER}, outputs = {INPUT_GRAD}
* The first and second input arguments are output grad image
* and filter data.
* The output argument is input grad image.
*
* 3. Backward filter calculation of convolution.
* inputs = {OUTPUT_GRAD, INPUT}, outputs = {FILTER_GRAD}
* The first and second input arguments are output grad image
* and input image.
* The output argument is filter grad.
*
* Arguments format of input, filter and output:
* 1. Input image, output image, input image gradient, output image gradient
* are all NCHW format. Where N is batch size, C is the number of channels,
* H and W is the height and width of image or image gradient.
*
* 2. The format of the filter data is MCHW, where M is the number of output
* image channels, C is the number of input image channels,
* H and W is height and width of filter.
*
* If `groups` is greater than 1, the filter's data format should be GMCHW,
* where G is the `groups`, and G * M is the number of output image
* channels, G * C is the number of input image channels,
* H and W is height and width of filter.
*/
class ConvFunctionBase : public FunctionBase {
public:
void init(const FuncConfig& config) override {
// function arguments
strides_ = config.get<std::vector<size_t>>("strides");
paddings_ = config.get<std::vector<size_t>>("paddings");
groups_ = config.get<size_t>("groups");

// number of inputs and outputs
numInputs_ = 2;
numOutputs_ = 1;
}

virtual void calc(const BufferArgs& inputs, const BufferArgs& outputs) {}

// input can be INPUT and INPUT_GRAD
// filter can be FILTER and FILTER_GRAD
// output can be OUTPUT and OUTPUT_GRAD
void check(const TensorShape& input,
const TensorShape& filter,
const TensorShape& output) {
// inputs and outputs arguments should be 4-dimensional.
CHECK_EQ(input.ndims(), (size_t)4);
CHECK_EQ(output.ndims(), (size_t)4);
// The batchSize of the input needs to be equal to
// the batchSize of the output.
CHECK_EQ(input[0], output[0]);

if (filter.ndims() == (size_t)4) {
// If the filter's dimension is 4, groups convolution is not supported.
CHECK_EQ(groups_, (size_t)1);
// The input and output channel dimensions are the second and first
// dimensions of the filter shape.
CHECK_EQ(input[1], filter[1]);
CHECK_EQ(output[1], filter[0]);
} else {
// filter argument should be 5-dimensional.
CHECK_EQ(filter.ndims(), (size_t)5);
// The first dimension of the filter is the size of the group
CHECK_EQ(filter[0], groups_);
// The input and output channel dimensions are the third and second
// dimensions of the filter shape.
CHECK_EQ(input[1], filter[2] * groups_);
CHECK_EQ(output[1], filter[1] * groups_);
}
}

protected:
size_t getFilterHeight(const TensorShape& filter) const {
return filter[filter.ndims() - 2];
}

size_t getFilterWidth(const TensorShape& filter) const {
return filter[filter.ndims() - 1];
}

std::vector<size_t> strides_;
std::vector<size_t> paddings_;

/// Group size, refer to grouped convolution in
/// Alex Krizhevsky's paper: when group=2, the first half of the
/// filters are only connected to the first half of the input channels,
/// and the second half only connected to the second half.
size_t groups_;

inline int strideH() const { return strides_[0]; }

inline int strideW() const { return strides_[1]; }

inline int paddingH() const { return paddings_[0]; }

inline int paddingW() const { return paddings_[1]; }

// A temporary memory in convolution calculation.
MemoryHandlePtr memory_;

template <DeviceType Device>
void resizeBuffer(size_t newSize) {
if (!memory_ || newSize * sizeof(real) > memory_->getAllocSize()) {
if (Device == DEVICE_TYPE_CPU) {
memory_ = std::make_shared<CpuMemoryHandle>(newSize * sizeof(real));
} else {
memory_ = std::make_shared<GpuMemoryHandle>(newSize * sizeof(real));
}
}
}
};

} // namespace paddle
210 changes: 210 additions & 0 deletions paddle/function/ConvOpTest.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,210 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <memory>
#include "Function.h"
#include "FunctionTest.h"

namespace paddle {

enum TestType {
kForwardTest = 0,
kBackwardInputTest = 1,
kBackwardFilterTest = 2,
};

template <DeviceType DType1, DeviceType DType2>
class ConvolutionTest {
public:
ConvolutionTest(const std::string& conv1,
const std::string& conv2,
TestType type,
std::string algo = "auto") {
for (size_t batchSize : {1, 32}) {
for (size_t inputSize : {7, 14, 54}) {
for (size_t filterSize : {1, 3, 5}) {
for (size_t inputChannels : {3, 64}) {
for (size_t outputChannels : {3, 64, 128}) {
if (inputChannels < outputChannels) break;
for (size_t stride : {1, 2}) {
for (size_t padding : {0, 1}) {
if (padding >= filterSize) break;
size_t outputSize =
(inputSize - filterSize + 2 * padding + stride) / stride;
VLOG(3) << " batchSize=" << batchSize
<< " inputChannels=" << inputChannels
<< " inputHeight=" << inputSize
<< " inputWidth=" << inputSize
<< " outputChannels=" << outputChannels
<< " filterHeight=" << filterSize
<< " filterWidth=" << filterSize
<< " outputHeight=" << outputSize
<< " outputWidth=" << outputSize
<< " stride=" << stride << " padding=" << padding;

std::vector<size_t> paddings = {padding, padding};
std::vector<size_t> strides = {stride, stride};
Compare2Function<DType1, DType2> test(
conv1,
conv2,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("groups", (size_t)1)
.set("algo", algo));

TensorShape input{
batchSize, inputChannels, inputSize, inputSize};
TensorShape filter{
outputChannels, inputChannels, filterSize, filterSize};
TensorShape output{
batchSize, outputChannels, outputSize, outputSize};

if (type == kForwardTest) {
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, output));
test.run();
} else if (type == kBackwardInputTest) {
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, input), ADD_TO);
test.run();
} else if (type == kBackwardFilterTest) {
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, filter));
test.run();
}
}
}
}
}
}
}
}
}
};

// Mainly used to test cases where the height and width (input, filter)
// are not equal.
template <DeviceType DType1, DeviceType DType2>
class ConvolutionTest2 {
public:
ConvolutionTest2(const std::string& conv1,
const std::string& conv2,
TestType type,
std::string algo = "auto") {
for (size_t batchSize : {16}) {
for (size_t inputHeight : {7, 31}) {
for (size_t inputWidth : {10, 54}) {
for (size_t filterHeight : {1, 5}) {
for (size_t filterWidth : {3, 7}) {
for (size_t inputChannels : {7}) {
for (size_t outputChannels : {32}) {
size_t stride = 1;
size_t padding = 0;
size_t outputHeight =
(inputHeight - filterHeight + 2 * padding + stride) /
stride;
size_t outputWidth =
(inputWidth - filterWidth + 2 * padding + stride) /
stride;
VLOG(3) << " batchSize=" << batchSize
<< " inputChannels=" << inputChannels
<< " inputHeight=" << inputHeight
<< " inputWidth=" << inputWidth
<< " outputChannels=" << outputChannels
<< " filterHeight=" << filterHeight
<< " filterWidth=" << filterWidth
<< " outputHeight=" << outputHeight
<< " outputWidth=" << outputWidth
<< " stride=" << stride << " padding=" << padding;

std::vector<size_t> paddings = {padding, padding};
std::vector<size_t> strides = {stride, stride};
Compare2Function<DType1, DType2> test(
conv1,
conv2,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("groups", (size_t)1)
.set("algo", algo));

TensorShape input{
batchSize, inputChannels, inputHeight, inputWidth};
TensorShape filter{
outputChannels, inputChannels, filterHeight, filterWidth};
TensorShape output{
batchSize, outputChannels, outputHeight, outputWidth};

if (type == kForwardTest) {
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, output));
test.run();
} else if (type == kBackwardInputTest) {
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, input), ADD_TO);
test.run();
} else if (type == kBackwardFilterTest) {
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, filter));
test.run();
}
}
}
}
}
}
}
}
}
};

TEST(Forward, GEMM) {
ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU> test(
"NaiveConv-CPU", "GemmConv-CPU", kForwardTest);
ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU> test2(
"NaiveConv-CPU", "GemmConv-CPU", kForwardTest);
}

#ifndef PADDLE_ONLY_CPU
TEST(Forward, GEMM2) {
ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
"GemmConv-CPU", "GemmConv-GPU", kForwardTest);
ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
"GemmConv-CPU", "GemmConv-GPU", kForwardTest);
}

TEST(BackwardInput, GEMM) {
ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
"GemmConvGradInput-CPU", "GemmConvGradInput-GPU", kBackwardInputTest);
ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
"GemmConvGradInput-CPU", "GemmConvGradInput-GPU", kBackwardInputTest);
}

TEST(BackwardFilter, GEMM) {
ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
"GemmConvGradFilter-CPU", "GemmConvGradFilter-GPU", kBackwardFilterTest);
ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
"GemmConvGradFilter-CPU", "GemmConvGradFilter-GPU", kBackwardFilterTest);
}
#endif

} // namespace paddle
Loading

0 comments on commit 17fe832

Please sign in to comment.