Skip to content

Commit

Permalink
- First fix to #33021
Browse files Browse the repository at this point in the history
- compilation fix

- Fix

- Lint
  • Loading branch information
jczaja committed Jun 1, 2021
1 parent a986929 commit 7171132
Show file tree
Hide file tree
Showing 4 changed files with 188 additions and 13 deletions.
9 changes: 4 additions & 5 deletions paddle/fluid/inference/tests/api/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -325,11 +325,10 @@ inference_analysis_api_test(test_analyzer_ocr ${OCR_INSTALL_DIR} analyzer_vis_te
# densebox
set(DENSEBOX_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/densebox")
download_data_without_verify(${DENSEBOX_INSTALL_DIR} "densebox.tar.gz")
#inference_analysis_test(test_analyzer_detect SRCS analyzer_detect_tester.cc
# EXTRA_DEPS ${INFERENCE_EXTRA_DEPS}
# ARGS --infer_model=${DENSEBOX_INSTALL_DIR}/model --infer_data=${DENSEBOX_INSTALL_DIR}/detect_input_50.txt
# --infer_shape=${DENSEBOX_INSTALL_DIR}/shape_50.txt)
#set_property(TEST test_analyzer_detect PROPERTY ENVIRONMENT GLOG_vmodule=analysis_predictor=2)
inference_analysis_test(test_analyzer_detect_functional SRCS analyzer_detect_functional_tester.cc
EXTRA_DEPS ${INFERENCE_EXTRA_DEPS}
ARGS --infer_model=${DENSEBOX_INSTALL_DIR}/model --infer_data=${DENSEBOX_INSTALL_DIR}/detect_input_50.txt
--infer_shape=${DENSEBOX_INSTALL_DIR}/shape_50.txt)

# mobilenet with transpose op
set(MOBILENET_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/mobilenet")
Expand Down
155 changes: 155 additions & 0 deletions paddle/fluid/inference/tests/api/analyzer_detect_functional_tester.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,155 @@
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <fstream>
#include <iostream>
#include "paddle/fluid/inference/tests/api/tester_helper.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/place.h"

DEFINE_string(infer_shape, "", "data shape file");
DEFINE_int32(sample, 20, "number of sample");

namespace paddle {
namespace inference {
namespace analysis {

struct Record {
std::vector<float> data;
std::vector<int32_t> shape;
};

Record ProcessALine(const std::string &line, const std::string &shape_line) {
VLOG(3) << "process a line";
std::vector<std::string> columns;

Record record;
std::vector<std::string> data_strs;
split(line, ' ', &data_strs);
for (auto &d : data_strs) {
record.data.push_back(std::stof(d));
}

std::vector<std::string> shape_strs;
split(shape_line, ' ', &shape_strs);
for (auto &s : shape_strs) {
record.shape.push_back(std::stoi(s));
}
return record;
}

void SetConfig(AnalysisConfig *cfg) {
cfg->SetModel(FLAGS_infer_model + "/model", FLAGS_infer_model + "/params");
cfg->DisableGpu();
cfg->SwitchIrDebug();
cfg->SwitchSpecifyInputNames(false);
cfg->SetCpuMathLibraryNumThreads(FLAGS_cpu_num_threads);
}

void SetInput(std::vector<std::vector<PaddleTensor>> *inputs,
const std::string &line, const std::string &shape_line) {
auto record = ProcessALine(line, shape_line);

PaddleTensor input;
input.shape = record.shape;
input.dtype = PaddleDType::FLOAT32;
size_t input_size = record.data.size() * sizeof(float);
input.data.Resize(input_size);
memcpy(input.data.data(), record.data.data(), input_size);
std::vector<PaddleTensor> input_slots;
input_slots.assign({input});
(*inputs).emplace_back(input_slots);
}

#ifdef PADDLE_WITH_MKLDNN
int GetNumCachedObjects(void) {
auto &pool = platform::DeviceContextPool::Instance();
platform::CPUPlace place;
auto onednn_dev_ctx =
dynamic_cast<platform::MKLDNNDeviceContext *>(pool.Get(place));
return onednn_dev_ctx->GetCachedObjectsNumber();
}

void validate_cache_onednn(int cache_capacity = 1) {
AnalysisConfig cfg;
SetConfig(&cfg);
cfg.EnableMKLDNN();
cfg.SetMkldnnCacheCapacity(cache_capacity);

// we will use two predictors (same model)
auto first_predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
std::vector<std::vector<PaddleTensor>> ref_outputs;
std::vector<std::vector<PaddleTensor>> input_slots_all;

std::ifstream file(FLAGS_infer_data);
std::ifstream infer_file(FLAGS_infer_shape);
std::vector<std::string> lines;
std::vector<std::string> shape_lines;

// Let's work with 4 samples
auto num_samples = 4;
ref_outputs.resize(num_samples);
lines.resize(num_samples);
shape_lines.resize(num_samples);

// Let's remeber number of cached objects before
// exection and after every single execution
std::vector<int> cache_filling;
cache_filling.push_back(GetNumCachedObjects());

// compute sequenctilly prediction
for (int i = 0; i < num_samples; ++i) {
std::getline(file, lines[i]);
std::getline(infer_file, shape_lines[i]);
SetInput(&input_slots_all, lines[i], shape_lines[i]);
first_predictor->Run(input_slots_all[i], &ref_outputs[i], FLAGS_batch_size);
// record number of cached objects
cache_filling.push_back(GetNumCachedObjects());
}

file.close();
infer_file.close();

first_predictor.reset(nullptr);
cache_filling.push_back(GetNumCachedObjects());

// Compare results
// First and last value should be equal e.g. before using cache (empty) and
// after releasing executor
PADDLE_ENFORCE_EQ(
cache_filling[0], cache_filling[cache_filling.size() - 1],
paddle::platform::errors::Fatal("Cache size before execution and after "
"releasing Executor do not match"));

// Iterate to check if cache is not increasing
// over exceeding cache capacity
if (cache_capacity != 0) {
for (int i = cache_capacity + 1; i < num_samples + 1; ++i) {
PADDLE_ENFORCE_EQ(
cache_filling[cache_capacity], cache_filling[i],
paddle::platform::errors::Fatal("Cache capacity should not increase "
"after full capacity is used"));
}
}
}

TEST(Analyzer_detect, validate_cache_onednn) {
validate_cache_onednn(2 /*cache_capacity */);
}
#endif

} // namespace analysis
} // namespace inference
} // namespace paddle
31 changes: 25 additions & 6 deletions paddle/fluid/platform/device_context.cc
Original file line number Diff line number Diff line change
Expand Up @@ -563,7 +563,7 @@ Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
: CPUDeviceContext(place), p_blobmap_() {
p_blobmap_.reset(new BlobMap());
p_exec_items_.reset(new ExecMap());
p_exec_items_.reset(new ExecShape());
p_mutex_.reset(new std::mutex());
}

Expand Down Expand Up @@ -644,22 +644,40 @@ void MKLDNNDeviceContext::ResetBlobMap(void* ptr) {
if (ptr == nullptr) {
p_blobmap_->clear();
} else {
for (auto& v : (*p_exec_items_)[ptr]) {
(v.first)->erase(v.second);
// Iterate through all shapes and release
// for each shape and active executor all entries
// of this executor
for (auto& s : *p_exec_items_) {
for (auto& v : (*s.second)[ptr]) {
(v.first)->erase(v.second);
}
s.second->erase(ptr);
}
p_exec_items_->erase(ptr);
}
} else {
VLOG(3) << "Prevented Clearing DNNL cache.";
block_next_cache_clearing_ = false;
}
}

void MKLDNNDeviceContext::RemoveShapeEntriesWithExecutor(void) const {
p_exec_items_->erase(p_exec_items_->begin());
}

void MKLDNNDeviceContext::LinkEntryWithExecutor(BlobPtr_t<KeyBlob> pblob,
KeyBlob::iterator it) const {
// Take current input shape from TLS
// Take current executor addess from TLS
// and for this executor's items add the one defined with arguments
(*p_exec_items_)[tls().get_curr_exec()].push_back(std::make_pair(pblob, it));
auto key_it = p_exec_items_
->insert(std::make_pair(tls().cur_input_shape_str,
std::make_shared<ExecMap>()))
.first;
(*key_it->second)[tls().get_curr_exec()].push_back(std::make_pair(pblob, it));

VLOG(3) << "LinkEntryWithExecutor, shapes: " << p_exec_items_->size()
<< " curr exec size: "
<< (*key_it->second)[tls().get_curr_exec()].size() << "\n";
}

void MKLDNNDeviceContext::BlockNextCacheClearing() {
Expand Down Expand Up @@ -716,6 +734,7 @@ void MKLDNNDeviceContext::SetBlob(const std::string& name,
VLOG(2) << "sid=" << sid
<< ", remove all blobs of shape: " << sBlob->begin()->first;
sBlob->erase(sBlob->begin()->first);
RemoveShapeEntriesWithExecutor();
}
pBlob = std::make_shared<KeyBlob>();
(*sBlob)[tls().cur_input_shape_str] = pBlob;
Expand All @@ -739,7 +758,7 @@ void MKLDNNDeviceContext::SetBlob(const std::string& name,
return;
}

unsigned int MKLDNNDeviceContext::GetCachedObjectsNumber(void) {
unsigned int MKLDNNDeviceContext::GetCachedObjectsNumber(void) const {
unsigned int num_entries = 0;
for (auto const& l3 : *p_blobmap_) {
for (auto const& l2 : *(l3.second)) {
Expand Down
6 changes: 4 additions & 2 deletions paddle/fluid/platform/device_context.h
Original file line number Diff line number Diff line change
Expand Up @@ -750,6 +750,7 @@ class MKLDNNDeviceContext : public CPUDeviceContext {

using ExecMap = std::unordered_map<
void*, std::vector<std::pair<BlobPtr_t<KeyBlob>, KeyBlob::iterator>>>;
using ExecShape = std::unordered_map<std::string, std::shared_ptr<ExecMap>>;

explicit MKLDNNDeviceContext(CPUPlace place);

Expand All @@ -758,6 +759,7 @@ class MKLDNNDeviceContext : public CPUDeviceContext {

// Register object to currently used executor's map
void LinkEntryWithExecutor(BlobPtr_t<KeyBlob>, KeyBlob::iterator) const;
void RemoveShapeEntriesWithExecutor(void) const;

// Remove all entries from the blob map
void ResetBlobMap(void* ptr);
Expand All @@ -772,7 +774,7 @@ class MKLDNNDeviceContext : public CPUDeviceContext {
void SetBlob(const std::string& name, std::shared_ptr<void> data) const;

// Calculate number of oneDNN objects cached
unsigned int GetCachedObjectsNumber(void);
unsigned int GetCachedObjectsNumber(void) const;

// Find a saved blob. Return nullptr if not found
std::shared_ptr<void> GetBlob(const std::string& name) const;
Expand All @@ -785,7 +787,7 @@ class MKLDNNDeviceContext : public CPUDeviceContext {
std::shared_ptr<BlobMap> p_blobmap_;
// Map key is pointer of executor and value is a data(iterator in map) needed
// to erase
std::shared_ptr<ExecMap> p_exec_items_;
std::shared_ptr<ExecShape> p_exec_items_;
std::shared_ptr<std::mutex> p_mutex_;
bool block_next_cache_clearing_ = false;
};
Expand Down

0 comments on commit 7171132

Please sign in to comment.