Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Dy2stat] Add TSM as ProgramTranslator Unit Test. #25008

Merged
merged 7 commits into from
Jun 15, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -4,3 +4,5 @@ string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}")
foreach(TEST_OP ${TEST_OPS})
py_test_modules(${TEST_OP} MODULES ${TEST_OP})
endforeach(TEST_OP)

set_tests_properties(test_tsm PROPERTIES TIMEOUT 900)
348 changes: 348 additions & 0 deletions python/paddle/fluid/tests/unittests/dygraph_to_static/test_tsm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,348 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import argparse
import math
import numpy as np
import os
import random
import sys
import time
import unittest

import paddle.fluid as fluid
from paddle.fluid.dygraph import declarative, ProgramTranslator, to_variable
from paddle.fluid.dygraph.nn import Conv2D, BatchNorm, Linear, Pool2D
from paddle.fluid.layer_helper import LayerHelper
from tsm_config_utils import *

random.seed(0)
np.random.seed(0)


def parse_args():
parser = argparse.ArgumentParser("Paddle Video train script")
parser.add_argument(
'--config',
type=str,
default='tsm.yaml',
help='path to config file of model')
parser.add_argument(
'--use_gpu',
type=bool,
default=fluid.is_compiled_with_cuda(),
help='default use gpu.')
args = parser.parse_args(['--config', 'tsm.yaml'])
return args


class ConvBNLayer(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
groups=1,
act=None):
super(ConvBNLayer, self).__init__()

self._conv = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=None,
act=None,
param_attr=fluid.param_attr.ParamAttr(),
bias_attr=False)

self._batch_norm = BatchNorm(
num_filters,
act=act,
param_attr=fluid.param_attr.ParamAttr(),
bias_attr=fluid.param_attr.ParamAttr())

def forward(self, inputs):
y = self._conv(inputs)
y = self._batch_norm(y)

return y


class BottleneckBlock(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_filters,
stride,
shortcut=True,
seg_num=8):
super(BottleneckBlock, self).__init__()

self.conv0 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act='relu')
self.conv1 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
stride=stride,
act='relu')
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters * 4,
filter_size=1,
act=None)

if not shortcut:
self.short = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters * 4,
filter_size=1,
stride=stride)
self.shortcut = shortcut
self.seg_num = seg_num
self._num_channels_out = int(num_filters * 4)

def forward(self, inputs):
shifts = fluid.layers.temporal_shift(inputs, self.seg_num, 1.0 / 8)
y = self.conv0(shifts)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = fluid.layers.elementwise_add(x=short, y=conv2, act="relu")
return y


class TSM_ResNet(fluid.dygraph.Layer):
def __init__(self, name_scope, config, mode):
super(TSM_ResNet, self).__init__(name_scope)

self.layers = config.MODEL.num_layers
self.seg_num = config.MODEL.seg_num
self.class_dim = config.MODEL.num_classes
self.reshape_list = [
config.MODEL.seglen * 3, config[mode.upper()]['target_size'],
config[mode.upper()]['target_size']
]

if self.layers == 50:
depth = [3, 4, 6, 3]
else:
raise NotImplementedError
num_filters = [64, 128, 256, 512]

self.conv = ConvBNLayer(
num_channels=3, num_filters=64, filter_size=7, stride=2, act='relu')
self.pool2d_max = Pool2D(
pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')

self.bottleneck_block_list = []
num_channels = 64

for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(
num_channels=num_channels,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
shortcut=shortcut,
seg_num=self.seg_num))
num_channels = int(bottleneck_block._num_channels_out)
self.bottleneck_block_list.append(bottleneck_block)
shortcut = True
self.pool2d_avg = Pool2D(
pool_size=7, pool_type='avg', global_pooling=True)

import math
stdv = 1.0 / math.sqrt(2048 * 1.0)

self.out = Linear(
2048,
self.class_dim,
act="softmax",
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv)),
bias_attr=fluid.param_attr.ParamAttr(
learning_rate=2.0, regularizer=fluid.regularizer.L2Decay(0.)))

@declarative
def forward(self, inputs):
y = fluid.layers.reshape(inputs, [-1] + self.reshape_list)
y = self.conv(y)
y = self.pool2d_max(y)
for bottleneck_block in self.bottleneck_block_list:
y = bottleneck_block(y)
y = self.pool2d_avg(y)
y = fluid.layers.dropout(y, dropout_prob=0.5)
y = fluid.layers.reshape(y, [-1, self.seg_num, y.shape[1]])
y = fluid.layers.reduce_mean(y, dim=1)
y = fluid.layers.reshape(y, shape=[-1, 2048])
y = self.out(y)
return y


class FakeDataReader(object):
def __init__(self, mode, cfg):
self.format = cfg.MODEL.format
self.num_classes = cfg.MODEL.num_classes
self.seg_num = cfg.MODEL.seg_num
self.seglen = cfg.MODEL.seglen

self.target_size = cfg[mode.upper()]['target_size']
self.img_mean = np.array(cfg.MODEL.image_mean).reshape(
[3, 1, 1]).astype(np.float32)
self.img_std = np.array(cfg.MODEL.image_std).reshape(
[3, 1, 1]).astype(np.float32)

self.batch_size = cfg[mode.upper()]['batch_size']
self.generator_out = []
self.total_iter = 3
for i in range(self.total_iter):
batch_out = []
for j in range(self.batch_size):
label = np.int64(random.randint(0, self.num_classes - 1))
random_mean = self.img_mean[0][0][0]
random_std = self.img_std[0][0][0]
imgs = np.random.normal(random_mean, random_std, [
self.seg_num, self.seglen * 3, self.target_size,
self.target_size
]).astype(np.float32)
batch_out.append((imgs, label))
self.generator_out.append(batch_out)

def create_reader(self):
def batch_reader():
for i in range(self.total_iter):
yield self.generator_out[i]

return batch_reader


def create_optimizer(cfg, params):
total_videos = cfg.total_videos
step = int(total_videos / cfg.batch_size + 1)
bd = [e * step for e in cfg.decay_epochs]
base_lr = cfg.learning_rate
lr_decay = cfg.learning_rate_decay
lr = [base_lr, base_lr * lr_decay, base_lr * lr_decay * lr_decay]
l2_weight_decay = cfg.l2_weight_decay
momentum = cfg.momentum

optimizer = fluid.optimizer.Momentum(
learning_rate=fluid.layers.piecewise_decay(
boundaries=bd, values=lr),
momentum=momentum,
regularization=fluid.regularizer.L2Decay(l2_weight_decay),
parameter_list=params)

return optimizer


def train(args, fake_data_reader, to_static):
program_translator = ProgramTranslator()
program_translator.enable(to_static)

config = parse_config(args.config)
train_config = merge_configs(config, 'train', vars(args))
valid_config = merge_configs(config, 'valid', vars(args))
print_configs(train_config, 'Train')

place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()

random.seed(0)
np.random.seed(0)
with fluid.dygraph.guard(place):
fluid.default_startup_program().random_seed = 1000
fluid.default_main_program().random_seed = 1000

video_model = TSM_ResNet("TSM", train_config, 'Train')

optimizer = create_optimizer(train_config.TRAIN,
video_model.parameters())

train_reader = fake_data_reader.create_reader()

ret = []
for epoch in range(train_config.TRAIN.epoch):
video_model.train()
total_loss = 0.0
total_acc1 = 0.0
total_acc5 = 0.0
total_sample = 0
for batch_id, data in enumerate(train_reader()):
x_data = np.array([item[0] for item in data])
y_data = np.array([item[1] for item in data]).reshape([-1, 1])

imgs = to_variable(x_data)
labels = to_variable(y_data)
labels.stop_gradient = True
outputs = video_model(imgs)
loss = fluid.layers.cross_entropy(
input=outputs, label=labels, ignore_index=-1)
avg_loss = fluid.layers.mean(loss)
acc_top1 = fluid.layers.accuracy(
input=outputs, label=labels, k=1)
acc_top5 = fluid.layers.accuracy(
input=outputs, label=labels, k=5)

avg_loss.backward()
optimizer.minimize(avg_loss)
video_model.clear_gradients()

total_loss += avg_loss.numpy()[0]
total_acc1 += acc_top1.numpy()[0]
total_acc5 += acc_top5.numpy()[0]
total_sample += 1

print('TRAIN Epoch {}, iter {}, loss = {}, acc1 {}, acc5 {}'.
format(epoch, batch_id,
avg_loss.numpy()[0],
acc_top1.numpy()[0], acc_top5.numpy()[0]))
ret.extend([
avg_loss.numpy()[0], acc_top1.numpy()[0],
acc_top5.numpy()[0]
])

print(
'TRAIN End, Epoch {}, avg_loss= {}, avg_acc1= {}, avg_acc5= {}'.
format(epoch, total_loss / total_sample, total_acc1 /
total_sample, total_acc5 / total_sample))
return ret


class TestTsm(unittest.TestCase):
def test_dygraph_static_same_loss(self):
if fluid.is_compiled_with_cuda():
fluid.set_flags({"FLAGS_cudnn_deterministic": True})
args = parse_args()
fake_data_reader = FakeDataReader("train", parse_config(args.config))
dygraph_loss = train(args, fake_data_reader, to_static=False)
static_loss = train(args, fake_data_reader, to_static=True)
self.assertTrue(
np.allclose(dygraph_loss, static_loss),
msg="dygraph_loss: {} \nstatic_loss: {}".format(dygraph_loss,
static_loss))


if __name__ == '__main__':
unittest.main()
43 changes: 43 additions & 0 deletions python/paddle/fluid/tests/unittests/dygraph_to_static/tsm.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
MODEL:
name: "TSM"
format: "pkl"
num_classes: 400
seg_num: 8
seglen: 1
image_mean: [0.485, 0.456, 0.406]
image_std: [0.229, 0.224, 0.225]
num_layers: 50
topk: 5

TRAIN:
epoch: 1
short_size: 256
target_size: 224
num_reader_threads: 12
buf_size: 1024
batch_size: 4 #128
use_gpu: True
num_gpus: 1 #8
filelist: "./data/dataset/kinetics/train.list"
learning_rate: 0.01
learning_rate_decay: 0.1
decay_epochs: [40, 60]
l2_weight_decay: 1e-4
momentum: 0.9
total_videos: 8000 #239781

VALID:
short_size: 256
target_size: 224
num_reader_threads: 12
buf_size: 1024
batch_size: 32 #128
filelist: "./data/dataset/kinetics/val.list"

TEST:
short_size: 256
target_size: 224
num_reader_threads: 12
buf_size: 1024
batch_size: 64
filelist: "./data/dataset/kinetics/test.list"
Loading