Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

【PaddlePaddle Hackathon 2】29 新增 PixelUnshuffle 组网 API #40774

Closed
wants to merge 6 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
142 changes: 142 additions & 0 deletions paddle/fluid/operators/pixel_unshuffle_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,142 @@
/*Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/unary.h"

namespace paddle {
namespace operators {

class PixelUnshuffleOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
};

class PixelUnshuffleOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"(Tensor, default Tensor<float>), "
"the input feature data of PixelUnshuffleOp, the layout is [N, C, "
"H, W] or [N, H, W, C].");
AddOutput("Out",
"(Tensor, default Tensor<float>), the output of "
"PixelUnshuffleOp. The layout is [N, C*factor^2, H/factor, "
"W/factor] or [N, H/factor, W/factor, C*factor^2].");
AddAttr<int>("downscale_factor",
"the factor to descrease spatial resolution by.")
.SetDefault(1)
.AddCustomChecker([](const int& downscale_factor) {
PADDLE_ENFORCE_GE(downscale_factor, 1,
platform::errors::InvalidArgument(
"downscale_factor should be larger than 0."));
});
AddAttr<std::string>(
"data_format",
"An optional string from: \"NHWC\", \"NCHW\". "
"Defaults to \"NHWC\", Specify the data format of the input data.")
.SetDefault("NCHW");

AddComment(R"DOC(
Pixel Unshuffle operator
This operator rearranges elements in a tensor of shape :math:`(*, C , H \times r, W \times r)`
to a tensor of shape :math:`( C \times r^2, H, W)`, where r is downscale factor.

This is taken as the inverse operator of Pixel Shuffle .

Please refer to the paper:
`Real-Time Single Image and Video Super-Resolution Using an Efficient
Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_
by Shi et. al (2016) for more details.

)DOC");
}
};

template <typename T>
class PixelUnshuffleGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

void Apply(GradOpPtr<T> op) const override {
op->SetType("pixel_unshuffle_grad");
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetAttrMap(this->Attrs());
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
}
};

class PixelUnshuffleGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE_EQ(
ctx->HasInput(framework::GradVarName("Out")), true,
platform::errors::NotFound("Input(Out@Grad) should not be null"));
PADDLE_ENFORCE_EQ(
ctx->HasOutput(framework::GradVarName("X")), true,
platform::errors::NotFound("Output(X@Grad) should not be null"));

auto do_dims = ctx->GetInputDim(framework::GradVarName("Out"));
PADDLE_ENFORCE_EQ(do_dims.size(), 4,
platform::errors::InvalidArgument(
"Input should be a 4-D tensor of format [N, C, H, W] "
"or [N, H, W, C], but got %u.",
do_dims.size()));

auto downscale_factor = ctx->Attrs().Get<int>("downscale_factor");

const std::string data_format =
ctx->Attrs().Get<std::string>("data_format");
const bool channel_last = (data_format == "NHWC");

auto dx_dims = do_dims;
dx_dims[0] = do_dims[0];

if (!channel_last) {
dx_dims[1] = do_dims[1] / (downscale_factor * downscale_factor);
dx_dims[2] = do_dims[2] * downscale_factor;
dx_dims[3] = do_dims[3] * downscale_factor;
} else {
dx_dims[1] = do_dims[1] * downscale_factor;
dx_dims[2] = do_dims[2] * downscale_factor;
dx_dims[3] = do_dims[3] / (downscale_factor * downscale_factor);
}
ctx->SetOutputDim(framework::GradVarName("X"), dx_dims);
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
DECLARE_INFER_SHAPE_FUNCTOR(pixel_unshuffle, PixelUnshuffleInferShapeFunctor,
PD_INFER_META(phi::PixelUnshuffleInferMeta));

REGISTER_OPERATOR(pixel_unshuffle, ops::PixelUnshuffleOp,
ops::PixelUnshuffleOpMaker,
ops::PixelUnshuffleGradMaker<paddle::framework::OpDesc>,
ops::PixelUnshuffleGradMaker<paddle::imperative::OpBase>,
PixelUnshuffleInferShapeFunctor);

REGISTER_OPERATOR(pixel_unshuffle_grad, ops::PixelUnshuffleGradOp);

REGISTER_OP_VERSION(pixel_unshuffle)
.AddCheckpoint(
R"ROC(
Compatible upgrade of pixel_unshuffle, add a new attribute [data_format])ROC",
paddle::framework::compatible::OpVersionDesc().NewAttr(
"data_format", "Specify the data format of the input data", true));
65 changes: 65 additions & 0 deletions paddle/phi/infermeta/unary.cc
Original file line number Diff line number Diff line change
Expand Up @@ -1204,6 +1204,71 @@ void PixelShuffleInferMeta(const MetaTensor& x,
out->set_dims(output_dims);
}

void PixelUnshuffleInferMeta(const MetaTensor& x,
int downscale_factor,
const std::string& data_format,
MetaTensor* out) {
auto input_dims = x.dims();
PADDLE_ENFORCE_EQ(input_dims.size(),
4,
phi::errors::InvalidArgument(
"Input should be a 4-D tensor of format [N, C, H, W] "
"or [N, H, W, C], but got %u.",
input_dims.size()));

const bool channel_last = (data_format == "NHWC");

if (!channel_last) {
PADDLE_ENFORCE_EQ(
input_dims[2] % downscale_factor,
0,
phi::errors::InvalidArgument(
"The square of downscale_factor[%u] should divide the "
"height[%u]",
downscale_factor,
input_dims[2]));
PADDLE_ENFORCE_EQ(
input_dims[3] % downscale_factor,
0,
phi::errors::InvalidArgument(
"The square of downscale_factor[%u] should divide the "
"height[%u]",
downscale_factor,
input_dims[3]));
} else {
PADDLE_ENFORCE_EQ(
input_dims[1] % downscale_factor,
0,
phi::errors::InvalidArgument(
"The square of downscale_factor[%u] should divide the "
"width[%u]",
downscale_factor,
input_dims[1]));
PADDLE_ENFORCE_EQ(
input_dims[2] % downscale_factor,
0,
phi::errors::InvalidArgument(
"The square of downscale_factor[%u] should divide the "
"width[%u]",
downscale_factor,
input_dims[2]));
}

auto output_dims = input_dims;
output_dims[0] = input_dims[0];
if (!channel_last) {
output_dims[1] = input_dims[1] * (downscale_factor * downscale_factor);
output_dims[2] = input_dims[2] / downscale_factor;
output_dims[3] = input_dims[3] / downscale_factor;
} else {
output_dims[1] = input_dims[1] / downscale_factor;
output_dims[2] = input_dims[2] / downscale_factor;
output_dims[3] = input_dims[3] * (downscale_factor * downscale_factor);
}
out->set_dtype(x.dtype());
out->set_dims(output_dims);
}

void PNormInferMeta(const MetaTensor& x,
float porder,
int axis,
Expand Down
5 changes: 5 additions & 0 deletions paddle/phi/infermeta/unary.h
Original file line number Diff line number Diff line change
Expand Up @@ -191,6 +191,11 @@ void PixelShuffleInferMeta(const MetaTensor& x,
const std::string& data_format,
MetaTensor* out);

void PixelUnshuffleInferMeta(const MetaTensor& x,
int downscale_factor,
const std::string& data_format,
MetaTensor* out);

void PNormInferMeta(const MetaTensor& x,
float porder,
int axis,
Expand Down
26 changes: 26 additions & 0 deletions paddle/phi/kernels/cpu/pixel_unshuffle_grad_kernel.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/pixel_unshuffle_grad_kernel.h"
#include "paddle/phi/kernels/impl/pixel_unshuffle_grad_kernel_impl.h"

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"

PD_REGISTER_KERNEL(pixel_unshuffle_grad,
CPU,
ALL_LAYOUT,
phi::PixelUnshuffleGradKernel,
float,
double) {}
26 changes: 26 additions & 0 deletions paddle/phi/kernels/cpu/pixel_unshuffle_kernel.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/pixel_unshuffle_kernel.h"
#include "paddle/phi/kernels/impl/pixel_unshuffle_kernel_impl.h"

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"

PD_REGISTER_KERNEL(pixel_unshuffle,
CPU,
ALL_LAYOUT,
phi::PixelUnshuffleKernel,
float,
double) {}
26 changes: 26 additions & 0 deletions paddle/phi/kernels/gpu/pixel_unshuffle_grad_kernel.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/impl/pixel_unshuffle_grad_kernel_impl.h"
#include "paddle/phi/kernels/pixel_unshuffle_grad_kernel.h"

#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"

PD_REGISTER_KERNEL(pixel_unshuffle_grad,
GPU,
ALL_LAYOUT,
phi::PixelUnshuffleGradKernel,
float,
double) {}
26 changes: 26 additions & 0 deletions paddle/phi/kernels/gpu/pixel_unshuffle_kernel.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/impl/pixel_unshuffle_kernel_impl.h"
#include "paddle/phi/kernels/pixel_unshuffle_kernel.h"

#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"

PD_REGISTER_KERNEL(pixel_unshuffle,
GPU,
ALL_LAYOUT,
phi::PixelUnshuffleKernel,
float,
double) {}
58 changes: 58 additions & 0 deletions paddle/phi/kernels/impl/pixel_unshuffle_grad_kernel_impl.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <algorithm>
#include <string>
#include <vector>
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/kernels/funcs/math_function.h"

namespace phi {

template <typename T, typename Context>
void PixelUnshuffleGradKernel(const Context& ctx,
const DenseTensor& out_grad,
int upscale_factor,
const std::string& data_format,
DenseTensor* x_grad) {
auto* dout = &out_grad;
auto* dx = x_grad;
ctx.template Alloc<T>(dx);
int factor = upscale_factor;
bool channel_last = (data_format == "NHWC");
auto do_dims = dout->dims();
auto dx_dims = dx->dims();

DenseTensor t(*dout);
if (!channel_last) {
t.Resize({do_dims[0], dx_dims[1], factor, factor, do_dims[2], do_dims[3]});
} else {
t.Resize({do_dims[0], do_dims[1], do_dims[2], dx_dims[3], factor, factor});
}

std::vector<int> axis = {0, 1, 4, 2, 5, 3};

DenseTensor o(*dx);
if (!channel_last) {
o.Resize({do_dims[0], dx_dims[1], do_dims[2], factor, do_dims[3], factor});
} else {
o.Resize({do_dims[0], do_dims[1], factor, do_dims[2], factor, dx_dims[3]});
}
phi::funcs::Transpose<Context, T, 6> trans;
trans(ctx, t, &o, axis);
dx->Resize(dx_dims);
}

} // namespace phi
Loading