Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Remove reduntant numpy output in Example code (1/2), test=document_fix #48678

Merged
merged 1 commit into from
Dec 7, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -106,7 +106,7 @@ def all_reduce(
data = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
task = dist.stream.all_reduce(data, sync_op=False)
task.wait()
out = data.numpy()
out = data
# [[5, 7, 9], [5, 7, 9]]
"""
if _warn_cur_rank_not_in_group(group):
Expand Down
41 changes: 21 additions & 20 deletions python/paddle/fft.py
Original file line number Diff line number Diff line change
Expand Up @@ -530,26 +530,27 @@ def fftn(x, s=None, axes=None, norm="backward", name=None):
x = paddle.meshgrid(arr, arr, arr)[1]

fftn_xp = paddle.fft.fftn(x, axes=(1, 2))
print(fftn_xp.numpy())
# [[[24.+0.j 0.+0.j 0.+0.j 0.-0.j]
# [-8.+8.j 0.+0.j 0.+0.j 0.-0.j]
# [-8.+0.j 0.+0.j 0.+0.j 0.-0.j]
# [-8.-8.j 0.+0.j 0.+0.j 0.-0.j]]

# [[24.+0.j 0.+0.j 0.+0.j 0.-0.j]
# [-8.+8.j 0.+0.j 0.+0.j 0.-0.j]
# [-8.+0.j 0.+0.j 0.+0.j 0.-0.j]
# [-8.-8.j 0.+0.j 0.+0.j 0.-0.j]]

# [[24.+0.j 0.+0.j 0.+0.j 0.-0.j]
# [-8.+8.j 0.+0.j 0.+0.j 0.-0.j]
# [-8.+0.j 0.+0.j 0.+0.j 0.-0.j]
# [-8.-8.j 0.+0.j 0.+0.j 0.-0.j]]

# [[24.+0.j 0.+0.j 0.+0.j 0.-0.j]
# [-8.+8.j 0.+0.j 0.+0.j 0.-0.j]
# [-8.+0.j 0.+0.j 0.+0.j 0.-0.j]
# [-8.-8.j 0.+0.j 0.+0.j 0.-0.j]]]
print(fftn_xp)
# Tensor(shape=[4, 4, 4], dtype=complex128, place=Place(gpu:0), stop_gradient=True,
# [[[(24+0j), 0j , 0j , -0j ],
# [(-8+8j), 0j , 0j , -0j ],
# [(-8+0j), 0j , 0j , -0j ],
# [(-8-8j), 0j , 0j , -0j ]],

# [[(24+0j), 0j , 0j , -0j ],
# [(-8+8j), 0j , 0j , -0j ],
# [(-8+0j), 0j , 0j , -0j ],
# [(-8-8j), 0j , 0j , -0j ]],

# [[(24+0j), 0j , 0j , -0j ],
# [(-8+8j), 0j , 0j , -0j ],
# [(-8+0j), 0j , 0j , -0j ],
# [(-8-8j), 0j , 0j , -0j ]],

# [[(24+0j), 0j , 0j , -0j ],
# [(-8+8j), 0j , 0j , -0j ],
# [(-8+0j), 0j , 0j , -0j ],
# [(-8-8j), 0j , 0j , -0j ]]])
"""
if is_integer(x) or is_floating_point(x):
return fftn_r2c(
Expand Down
4 changes: 2 additions & 2 deletions python/paddle/incubate/nn/layer/fused_transformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -533,8 +533,8 @@ class FusedFeedForward(Layer):
fused_feedforward_layer = FusedFeedForward(8, 8)
x = paddle.rand((1, 8, 8))
out = fused_feedforward_layer(x)
print(out.numpy().shape)
# (1, 8, 8)
print(out.shape)
# [1, 8, 8]
"""

def __init__(
Expand Down
9 changes: 5 additions & 4 deletions python/paddle/nn/functional/activation.py
Original file line number Diff line number Diff line change
Expand Up @@ -1678,11 +1678,12 @@ def glu(x, axis=-1, name=None):

x = paddle.to_tensor(
[[-0.22014759, -1.76358426, 0.80566144, 0.04241343],
[-1.94900405, -1.89956081, 0.17134808, -1.11280477]]
[-1.94900405, -1.89956081, 0.17134808, -1.11280477]]
)
print(F.glu(x).numpy())
# array([[-0.15216254, -0.9004892 ],
# [-1.0577879 , -0.46985325]], dtype=float32)
print(F.glu(x))
# Tensor(shape=[2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
# [[-0.15216254, -0.90048921],
# [-1.05778778, -0.46985325]])

"""
check_variable_and_dtype(
Expand Down
20 changes: 8 additions & 12 deletions python/paddle/nn/functional/conv.py
Original file line number Diff line number Diff line change
Expand Up @@ -651,10 +651,9 @@ def conv2d(
w_var = paddle.randn((6, 3, 3, 3), dtype='float32')

y_var = F.conv2d(x_var, w_var)
y_np = y_var.numpy()

print(y_np.shape)
# (2, 6, 6, 6)
print(y_var.shape)
# [2, 6, 6, 6]
"""
# entry checks
if data_format not in ["NCHW", "NHWC"]:
Expand Down Expand Up @@ -1224,10 +1223,9 @@ def conv2d_transpose(
w_var = paddle.randn((3, 6, 3, 3), dtype='float32')

y_var = F.conv2d_transpose(x_var, w_var)
y_np = y_var.numpy()

print(y_np.shape)
# (2, 6, 10, 10)
print(y_var.shape)
# [2, 6, 10, 10]
"""

if data_format not in ['NCHW', 'NHWC']:
Expand Down Expand Up @@ -1513,10 +1511,9 @@ def conv3d(
w_var = paddle.randn((6, 3, 3, 3, 3), dtype='float32')

y_var = F.conv3d(x_var, w_var)
y_np = y_var.numpy()

print(y_np.shape)
# (2, 6, 6, 6, 6)
print(y_var.shape)
# [2, 6, 6, 6, 6]
"""
# entry check
if data_format not in ["NCDHW", "NDHWC"]:
Expand Down Expand Up @@ -1728,10 +1725,9 @@ def conv3d_transpose(
w_var = paddle.randn((3, 6, 3, 3, 3), dtype='float32')

y_var = F.conv3d_transpose(x_var, w_var)
y_np = y_var.numpy()

print(y_np.shape)
# (2, 6, 10, 10, 10)
print(y_var.shape)
# [2, 6, 10, 10, 10]
"""
# entry checks
if data_format not in ["NCDHW", "NDHWC"]:
Expand Down
4 changes: 3 additions & 1 deletion python/paddle/nn/functional/distance.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,7 +63,9 @@ def pairwise_distance(x, y, p=2.0, epsilon=1e-6, keepdim=False, name=None):
x = paddle.to_tensor([[1., 3.], [3., 5.]], dtype=paddle.float64)
y = paddle.to_tensor([[5., 6.], [7., 8.]], dtype=paddle.float64)
distance = paddle.nn.functional.pairwise_distance(x, y)
print(distance.numpy()) # [5. 5.]
print(distance)
# Tensor(shape=[2], dtype=float64, place=Place(gpu:0), stop_gradient=True,
# [4.99999860, 4.99999860])

"""
check_type(p, 'porder', (float, int), 'PairwiseDistance')
Expand Down
9 changes: 5 additions & 4 deletions python/paddle/nn/functional/extension.py
Original file line number Diff line number Diff line change
Expand Up @@ -215,10 +215,11 @@ def sequence_mask(x, maxlen=None, dtype='int64', name=None):
lengths = paddle.to_tensor([10, 9, 8])
mask = paddle.nn.functional.sequence_mask(lengths)

print(mask.numpy())
# [[1 1 1 1 1 1 1 1 1 1]
# [1 1 1 1 1 1 1 1 1 0]
# [1 1 1 1 1 1 1 1 0 0]]
print(mask)
# Tensor(shape=[3, 10], dtype=int64, place=Place(gpu:0), stop_gradient=True,
# [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
# [1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
# [1, 1, 1, 1, 1, 1, 1, 1, 0, 0]])

"""

Expand Down
41 changes: 24 additions & 17 deletions python/paddle/nn/functional/loss.py
Original file line number Diff line number Diff line change
Expand Up @@ -1353,17 +1353,20 @@ def l1_loss(input, label, reduction='mean', name=None):
label = paddle.to_tensor([[1.7, 1], [0.4, 0.5]])

l1_loss = paddle.nn.functional.l1_loss(input, label)
print(l1_loss.numpy())
# [0.35]
print(l1_loss)
# Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
# [0.34999999])

l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='none')
print(l1_loss.numpy())
# [[0.20000005 0.19999999]
# [0.2 0.79999995]]
print(l1_loss)
# Tensor(shape=[2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
# [[0.20000005, 0.19999999],
# [0.20000000, 0.79999995]])

l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='sum')
print(l1_loss.numpy())
# [1.4]
print(l1_loss)
# Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
# [1.39999998])

"""
if reduction not in ['sum', 'mean', 'none']:
Expand Down Expand Up @@ -2530,9 +2533,11 @@ def cross_entropy(
cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
weight=weight, reduction=reduction)
dy_ret = cross_entropy_loss(
input,
label)
print(dy_ret.numpy()) #[5.41993642]
input,
label)
print(dy_ret)
# Tensor(shape=[1], dtype=float64, place=Place(gpu:0), stop_gradient=True,
# [5.34043430])

.. code-block:: python

Expand All @@ -2550,13 +2555,15 @@ def cross_entropy(
labels = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
labels /= paddle.sum(labels, axis=axis, keepdim=True)
paddle_loss_mean = paddle.nn.functional.cross_entropy(
logits,
labels,
soft_label=True,
axis=axis,
weight=weight,
reduction=reduction)
print(paddle_loss_mean.numpy()) #[1.12908343]
logits,
labels,
soft_label=True,
axis=axis,
weight=weight,
reduction=reduction)
print(paddle_loss_mean)
# Tensor(shape=[1], dtype=float64, place=Place(gpu:0), stop_gradient=True,
# [1.11043464])

"""

Expand Down
5 changes: 2 additions & 3 deletions python/paddle/nn/functional/vision.py
Original file line number Diff line number Diff line change
Expand Up @@ -368,9 +368,8 @@ def pixel_shuffle(x, upscale_factor, data_format="NCHW", name=None):

x = paddle.randn(shape=[2,9,4,4])
out_var = F.pixel_shuffle(x, 3)
out = out_var.numpy()
print(out.shape)
# (2, 1, 12, 12)
print(out_var.shape)
# [2, 1, 12, 12]
"""
if not isinstance(upscale_factor, int):
raise TypeError("upscale factor must be int type")
Expand Down
10 changes: 6 additions & 4 deletions python/paddle/nn/initializer/constant.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,11 +32,13 @@ class Constant(ConstantInitializer):

data = paddle.rand([30, 10, 2], dtype='float32')
linear = nn.Linear(2,
4,
weight_attr=nn.initializer.Constant(value=2.0))
4,
weight_attr=nn.initializer.Constant(value=2.0))
res = linear(data)
print(linear.weight.numpy())
#result is [[2. 2. 2. 2.],[2. 2. 2. 2.]]
print(linear.weight)
# Tensor(shape=[2, 4], dtype=float32, place=Place(gpu:0), stop_gradient=False,
# [[2., 2., 2., 2.],
# [2., 2., 2., 2.]])

"""

Expand Down
20 changes: 8 additions & 12 deletions python/paddle/nn/layer/conv.py
Original file line number Diff line number Diff line change
Expand Up @@ -668,9 +668,8 @@ class Conv2D(_ConvNd):

conv = nn.Conv2D(4, 6, (3, 3))
y_var = conv(x_var)
y_np = y_var.numpy()
print(y_np.shape)
# (2, 6, 6, 6)
print(y_var.shape)
# [2, 6, 6, 6]
"""

def __init__(
Expand Down Expand Up @@ -841,9 +840,8 @@ class Conv2DTranspose(_ConvNd):

conv = nn.Conv2DTranspose(4, 6, (3, 3))
y_var = conv(x_var)
y_np = y_var.numpy()
print(y_np.shape)
# (2, 6, 10, 10)
print(y_var.shape)
# [2, 6, 10, 10]
"""

def __init__(
Expand Down Expand Up @@ -999,9 +997,8 @@ class Conv3D(_ConvNd):

conv = nn.Conv3D(4, 6, (3, 3, 3))
y_var = conv(x_var)
y_np = y_var.numpy()
print(y_np.shape)
# (2, 6, 6, 6, 6)
print(y_var.shape)
# [2, 6, 6, 6, 6]
"""

def __init__(
Expand Down Expand Up @@ -1181,9 +1178,8 @@ class Conv3DTranspose(_ConvNd):

conv = nn.Conv3DTranspose(4, 6, (3, 3, 3))
y_var = conv(x_var)
y_np = y_var.numpy()
print(y_np.shape)
# (2, 6, 10, 10, 10)
print(y_var.shape)
# [2, 6, 10, 10, 10]
"""

def __init__(
Expand Down
4 changes: 3 additions & 1 deletion python/paddle/nn/layer/distance.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,9 @@ class PairwiseDistance(Layer):
y = paddle.to_tensor([[5., 6.], [7., 8.]], dtype=paddle.float64)
dist = paddle.nn.PairwiseDistance()
distance = dist(x, y)
print(distance.numpy()) # [5. 5.]
print(distance)
# Tensor(shape=[2], dtype=float64, place=Place(gpu:0), stop_gradient=True,
# [4.99999860, 4.99999860])

"""

Expand Down
43 changes: 26 additions & 17 deletions python/paddle/nn/layer/loss.py
Original file line number Diff line number Diff line change
Expand Up @@ -102,7 +102,9 @@ class BCEWithLogitsLoss(Layer):
label = paddle.to_tensor([1.0, 0.0, 1.0], dtype="float32")
bce_logit_loss = paddle.nn.BCEWithLogitsLoss()
output = bce_logit_loss(logit, label)
print(output.numpy()) # [0.45618808]
print(output)
# Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
# [0.45618814])

"""

Expand Down Expand Up @@ -319,9 +321,11 @@ class CrossEntropyLoss(Layer):
cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
weight=weight, reduction=reduction)
dy_ret = cross_entropy_loss(
input,
label)
print(dy_ret.numpy()) #[5.41993642]
input,
label)
print(dy_ret)
# Tensor(shape=[1], dtype=float64, place=Place(gpu:0), stop_gradient=True,
# [5.34043430])

.. code-block:: python

Expand All @@ -339,13 +343,15 @@ class CrossEntropyLoss(Layer):
labels = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
labels /= paddle.sum(labels, axis=axis, keepdim=True)
paddle_loss_mean = paddle.nn.functional.cross_entropy(
logits,
labels,
soft_label=True,
axis=axis,
weight=weight,
reduction=reduction)
print(paddle_loss_mean.numpy()) #[1.12908343]
logits,
labels,
soft_label=True,
axis=axis,
weight=weight,
reduction=reduction)
print(paddle_loss_mean)
# Tensor(shape=[1], dtype=float64, place=Place(gpu:0), stop_gradient=True,
# [1.11043464])

"""

Expand Down Expand Up @@ -635,19 +641,22 @@ class L1Loss(Layer):

l1_loss = paddle.nn.L1Loss()
output = l1_loss(input, label)
print(output.numpy())
# [0.35]
print(output)
# Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
# [0.34999999])

l1_loss = paddle.nn.L1Loss(reduction='sum')
output = l1_loss(input, label)
print(output.numpy())
# [1.4]
print(output)
# Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
# [1.39999998])

l1_loss = paddle.nn.L1Loss(reduction='none')
output = l1_loss(input, label)
print(output)
# [[0.20000005 0.19999999]
# [0.2 0.79999995]]
# Tensor(shape=[2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
# [[0.20000005, 0.19999999],
# [0.20000000, 0.79999995]])

"""

Expand Down
Loading