Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[AutoParallel] Support disttensor for Tensor.copy_ #58369

Merged
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
70 changes: 66 additions & 4 deletions paddle/phi/api/lib/tensor_method.cc
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,11 @@ limitations under the License. */
#include "paddle/phi/core/tensor_utils.h"
#include "paddle/phi/infermeta/unary.h"
// clang-format off

#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/phi/infermeta/spmd_rules/rules.h"
#include "paddle/phi/core/distributed/auto_parallel/reshard_utils.h"
#include "paddle/phi/api/lib/data_transform.h"
#endif
namespace paddle {
namespace experimental {
// declare cast api
Expand Down Expand Up @@ -87,9 +91,7 @@ void Tensor::copy_(const Tensor &src,
VLOG(8) << "Src is empty, skip copy";
return;
}
// Prepare copy kernel key and outputs
auto kernel_key_set = ParseKernelKeyByInputArgs(src);
KernelType kernel_type = ParseKernelTypeByInputArgs(src);

VLOG(3) << "Deep copy Tensor from " << src.name() << " to " << name();
if (initialized()) {
PADDLE_ENFORCE_EQ(dtype(),
Expand All @@ -114,6 +116,12 @@ void Tensor::copy_(const Tensor &src,
"Copy cannot be performed!",
target_place,
place()));
}

// Prepare copy kernel key and outputs
auto kernel_key_set = ParseKernelKeyByInputArgs(src);
KernelType kernel_type = ParseKernelTypeByInputArgs(src);
if (initialized()) {
kernel_key_set.backend_set = kernel_key_set.backend_set |
BackendSet(phi::TransToPhiBackend(place()));
} else {
Expand All @@ -128,6 +136,60 @@ void Tensor::copy_(const Tensor &src,
auto *dev_ctx = pool.GetMutable(
place.GetType() == target_place.GetType() ? target_place : place);

#ifdef PADDLE_WITH_DISTRIBUTE
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

auto parallel可以放在DenseTensor kernel的分支,是DenseTensor Kernel的一个扩展机制

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done, thx!

bool run_auto_parallel = AllInputsAreDistTensor(src);
bool rank_is_in_current_mesh = false;
if (run_auto_parallel) {
auto mesh = std::static_pointer_cast<phi::distributed::DistTensor>(
src.impl())->dist_attr().process_mesh();
rank_is_in_current_mesh = phi::distributed::IsCurRankInMesh(mesh);

// 1. InferSpmd (Infer DistAttr of Inputs&Outputs)
auto meta_dist_input_x = MakeDistMetaTensor(*src.impl());
auto spmd_info = phi::distributed::ElementwiseUnaryInferSpmd(
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这里咱们是不是直接创建一个输出,把输入的设置上去就行,不用走InferSpmd,这个elementwise的逻辑还挺多的

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这里不会出现:这个Tensor不需要在这个卡上计算的情况吗?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

哦,我理解错了

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done, thx!

meta_dist_input_x);

// 2. Create API Output & Prepare Dist and Dense Output
auto dist_out = SetKernelDistOutput(this, spmd_info.second[0]);
auto dense_out = dist_out->unsafe_mutable_value();
if (!rank_is_in_current_mesh) {
*dense_out = phi::DenseTensor(
std::make_shared<phi::Allocation>(nullptr,
0, phi::distributed::GetDefaultPlace()),
phi::DenseTensorMeta());
}

// 3. Infer DistTensor's Global Shape
phi::MetaTensor meta_dist_out(dist_out);
phi::UnchangedInferMeta(MakeMetaTensor(*(src.impl_)), &meta_dist_out);

if (rank_is_in_current_mesh) {
// 4. Select Kernel
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这里的注释感觉和代码对不上,是不是可以删一删


// 5. Reshard Input
auto dist_input_x = ReshardApiInputToKernelInput(
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

好像也不需要reshard,原先的值给输出copy过去就行

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done, thx!

dev_ctx, src, spmd_info.first[0]);

// 6. PrepareData (DataTransform & Prepare Dense Input)
auto input_x = &dist_input_x->value();

// 7. Infer Local DenseTensor Meta
phi::MetaTensor meta_dense_out(dense_out);
phi::UnchangedInferMeta(MakeMetaTensor(*input_x), &meta_dense_out);

// 8. DenseTensor Kernel Call
phi::Copy(*dev_ctx, *input_x, target_place, blocking, dense_out);

// 9. Reshard Partial Output to Replicated (Temporary)
ReshardOutputPartialAxisToReplicated(dev_ctx, dist_out);
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这里也可以省略

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done, thx!

}

// 10. Set Output Dist Attr For Default Impl
// API `copy_` does not need to set DistAttr for output.
return;
}
#endif
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这里的条件宏是不是没必要呀


if (kernel_type == KernelType::DENSE_TENSOR_KENREL) {
SetKernelOutput(this);
phi::MetaTensor meta_out(impl_.get());
Expand Down
57 changes: 57 additions & 0 deletions test/auto_parallel/semi_auto_parallel_recompute.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import numpy as np
from semi_auto_parallel_simple_net import MPDemoNetRecompute

import paddle
import paddle.distributed as dist
from paddle import nn

BATCH_SIZE = 16
BATCH_NUM = 4
IMAGE_SIZE = 784
CLASS_NUM = 10


def run_dynamic(layer, image, label):
# create loss
loss_fn = nn.MSELoss()
# run forward and backward
image = paddle.to_tensor(image)
image.stop_gradient = False
out = layer(image)

label = paddle.to_tensor(label)
loss = loss_fn(out, label)

loss.backward()
return loss, layer.w0.grad, layer.w1.grad


class TestSemiAutoParallelRecompute:
def test_recompute():
mesh = dist.ProcessMesh([0, 1], dim_names=["x"])
image = np.random.random([BATCH_SIZE, IMAGE_SIZE]).astype('float32')
label = np.random.random([BATCH_SIZE, CLASS_NUM]).astype('float32')
w0 = np.random.random([IMAGE_SIZE, IMAGE_SIZE]).astype('float32')
w1 = np.random.random([IMAGE_SIZE, CLASS_NUM]).astype('float32')
run_dynamic(
layer=MPDemoNetRecompute(w0, w1, mesh), image=image, label=label
)


if __name__ == "__main__":
TestSemiAutoParallelRecompute.test_recompute()
35 changes: 35 additions & 0 deletions test/auto_parallel/semi_auto_parallel_simple_net.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
import paddle
import paddle.distributed as dist
from paddle import nn
from paddle.distributed.fleet.utils import recompute

BATCH_SIZE = 16
BATCH_NUM = 4
Expand Down Expand Up @@ -114,6 +115,40 @@ def forward(self, x):
return z


class MPDemoNetRecompute(nn.Layer):
def __init__(self, np_w0, np_w1, mesh, param_suffix=""):
super().__init__()
self.w0 = dist.shard_tensor(
self.create_parameter(
shape=[IMAGE_SIZE, IMAGE_SIZE],
attr=paddle.framework.ParamAttr(
name="mp_demo_weight_1" + param_suffix,
initializer=paddle.nn.initializer.Assign(np_w0),
),
),
dist_attr=dist.DistAttr(mesh=mesh, sharding_specs=[None, 'x']),
)
self.w1 = dist.shard_tensor(
self.create_parameter(
shape=[IMAGE_SIZE, CLASS_NUM],
attr=paddle.framework.ParamAttr(
name="mp_nemo_weight_2" + param_suffix,
initializer=paddle.nn.initializer.Assign(np_w1),
),
),
dist_attr=dist.DistAttr(mesh=mesh, sharding_specs=['x', None]),
)

def _inner_forward_fn(self, x):
y = paddle.matmul(x, self.w0)
z = paddle.matmul(y, self.w1)
return z

def forward(self, x):
z = recompute(self._inner_forward_fn, x)
return z


class PPDemoNet(nn.Layer):
def __init__(self, np_w0, np_w1, mesh0, mesh1):
super().__init__()
Expand Down
10 changes: 10 additions & 0 deletions test/auto_parallel/test_semi_auto_parallel_single_strategy.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,6 +50,16 @@ def test_simple_net_single_strategy_with_amp(self):
user_defined_envs=envs,
)

def test_simple_net_recompute(self):
envs_list = test_base.gen_product_envs_list(
self._default_envs, self._changeable_envs
)
for envs in envs_list:
self.run_test_case(
"semi_auto_parallel_recompute.py",
user_defined_envs=envs,
)


if __name__ == "__main__":
unittest.main()