Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

【PPMix No.3】support qwen2-vl-2b lora finetune #847

Merged
merged 6 commits into from
Dec 2, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file added paddlemix/demo_images/qwen2-vl-2b-lora-ft.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
7 changes: 6 additions & 1 deletion paddlemix/examples/qwen2_vl/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -51,15 +51,20 @@ opensource_json.tar需下载解压在playground/目录下,opensource_json 里

### 4.2 微调命令

注意:此微调训练为全参数微调,冻结视觉编码器而放开LLM训练,2B模型微调训练的显存大小约为30G,7B模型微调训练的显存大小约为75G
注意:此微调训练为语言模型微调,冻结视觉编码器而放开LLM训练,2B模型全量微调训练的显存大小约为30G,7B模型全量微调训练的显存大小约为75G

```bash
# 2B
sh paddlemix/examples/qwen2_vl/shell/basline_2b_bs32_1e8.sh

# 2B lora
sh paddlemix/examples/qwen2_vl/shell/basline_2b_lora_bs32_1e8.sh

# 7B
sh paddlemix/examples/qwen2_vl/shell/basline_7b_bs32_1e8.sh
```
注意:微调2b模型的运行示例如下:
![运行示例](../../demo_images/qwen2-vl-2b-lora-ft.png)

### 4.3 微调后使用

Expand Down
49 changes: 47 additions & 2 deletions paddlemix/examples/qwen2_vl/qwen2vl_finetune.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@
import sys
import traceback
from dataclasses import dataclass, field
from typing import Dict, Optional
from typing import Dict, Optional, List

import numpy as np
import paddle
Expand All @@ -31,6 +31,7 @@
from paddlenlp.trainer.trainer import Trainer
from paddlenlp.trainer.trainer_utils import get_last_checkpoint
from paddlenlp.transformers import Qwen2Tokenizer
from paddlenlp.peft import LoRAConfig, LoRAModel
from PIL import Image, ImageFile, PngImagePlugin, UnidentifiedImageError

from paddlemix.datasets.internvl_dataset import ConcatDataset, WeightedConcatDataset
Expand Down Expand Up @@ -125,7 +126,31 @@ class ModelArguments(ProcessorArguments):
default=0.0,
metadata={"help": "Set the drop path rate for the ViT model. Default is 0."},
)

lora: Optional[bool] = field(
default=False,
metadata={"help": "Whether or not to use lora to train model."},
)
lora_path: Optional[str] = field(
default=None,
metadata={"help": "Initialize lora state dict."}
)
lora_rank: Optional[int] = field(
default=128,
metadata={"help": "Set the value of rank in lora. Default is 128."},
)
lora_alpha: Optional[int] = field(
default=256,
metadata={"help": "Set the value of alpha in lora. Default is 256."},
)
lora_dropout: Optional[float] = field(
default=0.0,
metadata={"help": "Set the value of dropout in lora. Default is 0.0."},
)
lora_target_modules: Optional[str] = field(
default=None,
metadata={"help": "Lora target modules."}
)


@dataclass
class DataTrainingArguments:
Expand Down Expand Up @@ -528,6 +553,26 @@ def _freeze_params(module):
model.lm_head = model.lm_head.eval()
_freeze_params(model.model)
_freeze_params(model.lm_head)


# lora
if model_args.lora:
if model_args.lora_path is None:
target_modules = model_args.lora_target_modules.split(",")
lora_config = LoRAConfig(
target_modules=target_modules,
r=model_args.lora_rank,
lora_alpha=model_args.lora_alpha,
lora_dropout=model_args.lora_dropout,
merge_weights=False,
tensor_parallel_degree=training_args.tensor_parallel_degree,
dtype=dtype,
)
model = LoRAModel(model, lora_config)
else:
model = LoRAModel.from_pretrained(model=model, lora_path=model_args.lora_path)
model.mark_only_lora_as_trainable()
model.print_trainable_parameters()

print_trainable_params(model)

Expand Down
86 changes: 86 additions & 0 deletions paddlemix/examples/qwen2_vl/shell/basline_2b_lora_bs32_1e8.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

set -x

GPUS=${GPUS:-8}
BATCH_SIZE=${BATCH_SIZE:-32}
PER_DEVICE_BATCH_SIZE=${PER_DEVICE_BATCH_SIZE:-1}

GRADIENT_ACC=$((BATCH_SIZE / PER_DEVICE_BATCH_SIZE / GPUS))
tensor_parallel_degree=${tensor_parallel_degree:-1}
sharding_parallel_degree=$((GPUS / tensor_parallel_degree))

export PYTHONPATH="${PYTHONPATH}:$(pwd)"
export MASTER_PORT=34229
export TF_CPP_MIN_LOG_LEVEL=3

OUTPUT_DIR='work_dirs/basline_330k_2b_bs32_1e8'

if [ ! -d "$OUTPUT_DIR" ]; then
mkdir -p "$OUTPUT_DIR"
fi

TRAINING_MODEL_RESUME="None"
TRAINER_INSTANCES='127.0.0.1'
MASTER='127.0.0.1:8080'

meta_path="paddlemix/examples/qwen2_vl/configs/baseline_6data_330k.json"

TRAINING_PYTHON="python -m paddle.distributed.launch --master ${MASTER} --nnodes 1 --nproc_per_node ${GPUS} --rank 0 --ips ${TRAINER_INSTANCES} --run_mode=collective"
${TRAINING_PYTHON} --log_dir ${OUTPUT_DIR}/paddle_distributed_logs \
paddlemix/examples/qwen2_vl/qwen2vl_finetune.py \
--do_train \
--model_name_or_path "Qwen/Qwen2-VL-2B-Instruct" \
--output_dir ${OUTPUT_DIR} \
--logging_dir ${OUTPUT_DIR}/logs \
--meta_path ${meta_path} \
--overwrite_output_dir True \
--dataloader_num_workers 8 \
--bf16 True \
--fp16 False \
--fp16_opt_level "O2" \
--num_train_epochs 1 \
--per_device_train_batch_size ${PER_DEVICE_BATCH_SIZE} \
--gradient_accumulation_steps ${GRADIENT_ACC} \
--freeze_vit True \
--max_seq_length 8192 \
--image_resolution 512 \
--recompute False \
--max_grad_norm 1.0 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 1000 \
--save_total_limit 1 \
--learning_rate 1e-8 \
--warmup_ratio 0.1 \
--warmup_steps 100 \
--weight_decay 0.1 \
--optim "adamw" \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--report_to "visualdl" \
--tensor_parallel_degree=${tensor_parallel_degree} \
--sharding_parallel_degree=${sharding_parallel_degree} \
--pipeline_parallel_degree=1 \
--sep_parallel_degree=1 \
--sharding="stage1" \
--amp_master_grad=1 \
--hybrid_parallel_topo_order="sharding_first" \
--lora True \
--lora_rank=12 \
--lora_alpha=256 \
--lora_dropout=0.0 \
--lora_target_modules="model.layers.*q_proj.*,model.layers.*k_proj.*,model.layers.*v_proj.*,model.layers.*gate_proj.*,model.layers.*up_proj.*,model.layers.*down_proj.*,model.layers.*o_proj.*" \
2>&1 | tee -a "${OUTPUT_DIR}/training_log.txt"