Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add LitEma for SD #3755

Merged
merged 2 commits into from
Nov 14, 2022
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
104 changes: 104 additions & 0 deletions ppdiffusers/ppdiffusers/models/ema.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle import nn


class LitEma(nn.Layer):
"""
Exponential Moving Average (EMA) of model updates

Parameters:
model: The model architecture for apply EMA.
decay: The exponential decay. Default 0.9999.
use_num_updates: Whether to use number of updates when computing
averages.
"""

def __init__(self, model, decay=0.9999, use_num_upates=True):
super().__init__()
if decay < 0.0 or decay > 1.0:
raise ValueError('Decay must be between 0 and 1')

self.m_name2s_name = {}
self.register_buffer('decay',
paddle.to_tensor(decay, dtype=paddle.float32))
self.register_buffer(
'num_updates',
paddle.to_tensor(0, dtype=paddle.int64)
if use_num_upates else paddle.to_tensor(-1, dtype=paddle.int64))

for name, p in model.named_parameters():
if not p.stop_gradient:
#remove as '.'-character is not allowed in buffers
s_name = name.replace('.', '')
self.m_name2s_name.update({name: s_name})
self.register_buffer(s_name, p.clone().detach())

self.collected_params = []

def forward(self, model):
decay = self.decay

if self.num_updates >= 0:
self.num_updates += 1
decay = min(self.decay,
(1 + self.num_updates) / (10 + self.num_updates))

one_minus_decay = 1.0 - decay

with paddle.no_grad():
m_param = dict(model.named_parameters())
shadow_params = dict(self.named_buffers())

for key in m_param:
if not m_param[key].stop_gradient:
sname = self.m_name2s_name[key]
shadow_params[sname].scale_(decay)
shadow_params[sname].add_(m_param[key] * one_minus_decay)
else:
assert not key in self.m_name2s_name

def copy_to(self, model):
m_param = dict(model.named_parameters())
shadow_params = dict(self.named_buffers())
for key in m_param:
if not m_param[key].stop_gradient:
m_param[key].copy_(shadow_params[self.m_name2s_name[key]], True)
else:
assert not key in self.m_name2s_name

def store(self, parameters):
"""
Save the current parameters for restoring later.
Args:
parameters: Iterable of `paddle.nn.Parameter`; the parameters to be
temporarily stored.
"""
self.collected_params = [param.clone() for param in parameters]

def restore(self, parameters):
"""
Restore the parameters stored with the `store` method.
Useful to validate the model with EMA parameters without affecting the
original optimization process. Store the parameters before the
`copy_to` method. After validation (or model saving), use this to
restore the former parameters.
Args:
parameters: Iterable of `paddle.nn.Parameter`; the parameters to be
updated with the stored parameters.
"""
for c_param, param in zip(self.collected_params, parameters):
param.copy_(c_param, True)