Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[doc] Update README #8922

Merged
merged 2 commits into from
Aug 14, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 9 additions & 7 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@

## News 📢

* **2024.08.08 📚《飞桨产业级大语言模型开发利器 PaddleNLP 3.0 重磅发布》**,训压推全流程贯通,主流模型全覆盖。大模型自动并行,千亿模型训推全流程开箱即用。提供产业级高性能精调与对齐解决方案,压缩推理领先,多硬件适配。覆盖产业级智能助手、内容创作、知识问答、关键信息抽取等应用场景。直播时间:8月15日(周四)19:00。报名链接:https://www.wjx.top/vm/Y2f7FFY.aspx?udsid=143844
* **2024.08.08 📚《飞桨产业级大语言模型开发利器 PaddleNLP 3.0 重磅发布》**,训压推全流程贯通,主流模型全覆盖。大模型自动并行,千亿模型训推全流程开箱即用。提供产业级高性能精调与对齐解决方案,压缩推理领先,多硬件适配。覆盖产业级智能助手、内容创作、知识问答、关键信息抽取等应用场景。直播时间:8月22日(周四)19:00。报名链接:https://www.wjx.top/vm/Y2f7FFY.aspx?udsid=143844

* **2024.06.27 [PaddleNLP v3.0 Beta](https://github.com/PaddlePaddle/PaddleNLP/releases/tag/v3.0.0-beta0)**:拥抱大模型,体验全升级。统一大模型套件,实现国产计算芯片全流程接入;全面支持飞桨4D 并行配置、高效精调策略、高效对齐算法、高性能推理等大模型产业级应用流程;自研极致收敛的 RsLoRA+算法、自动扩缩容存储机制 Unified Checkpoint 和通用化支持的 FastFFN、FusedQKV 助力大模型训推;主流模型持续支持更新,提供高效解决方案。

Expand Down Expand Up @@ -80,6 +80,7 @@ Unified Checkpoint 大模型存储格式在模型参数分布上支持动态扩
| [Qwen](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/llm/config/qwen/) | qwen/qwen-7b, qwen/qwen-7b-chat, qwen/qwen-14b, qwen/qwen-14b-chat, qwen/qwen-72b, qwen/qwen-72b-chat, |
| [Qwen1.5](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/llm/config/qwen/) | Qwen/Qwen1.5-0.5B, Qwen/Qwen1.5-0.5B-Chat, Qwen/Qwen1.5-1.8B, Qwen/Qwen1.5-1.8B-Chat, Qwen/Qwen1.5-4B, Qwen/Qwen1.5-4B-Chat, Qwen/Qwen1.5-7B, Qwen/Qwen1.5-7B-Chat, Qwen/Qwen1.5-14B, Qwen/Qwen1.5-14B-Chat, Qwen/Qwen1.5-32B, Qwen/Qwen1.5-32B-Chat, Qwen/Qwen1.5-72B, Qwen/Qwen1.5-72B-Chat, Qwen/Qwen1.5-110B, Qwen/Qwen1.5-110B-Chat, Qwen/Qwen1.5-MoE-A2.7B, Qwen/Qwen1.5-MoE-A2.7B-Chat |
| [Qwen2](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/llm/config/qwen/) | Qwen/Qwen2-0.5B, Qwen/Qwen2-0.5B-Instruct, Qwen/Qwen2-1.5B, Qwen/Qwen2-1.5B-Instruct, Qwen/Qwen2-7B, Qwen/Qwen2-7B-Instruct, Qwen/Qwen2-72B, Qwen/Qwen2-72B-Instruct, Qwen/Qwen2-57B-A14B, Qwen/Qwen2-57B-A14B-Instruct |
| [Yuan2](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/llm/config/yuan/) | IEITYuan/Yuan2-2B, IEITYuan/Yuan2-51B, IEITYuan/Yuan2-102B |

* 4D 并行和算子优化已支持 LLaMA 系列、Baichuan 系列、Bloom 系列、ChatGLM 系列、Gemma 系列、Mistral 系列、OPT 系列和 Qwen 系列,【LLM】模型4D 并行和算子支持列表如下:

Expand All @@ -105,6 +106,7 @@ Unified Checkpoint 大模型存储格式在模型参数分布上支持动态扩
| GPT-2/GPT-3 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| OPT | ✅ | ✅ | 🚧 | ✅ | ✅ | ✅ | 🚧 |
| Gemma | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| Yuan2 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | 🚧 |

* 大模型预训练、精调(包含 SFT、PEFT 技术)、对齐、量化已支持 LLaMA 系列、Baichuan 系列、Bloom 系列、ChatGLM 系列、Mistral 系列、OPT 系列和 Qwen 系列,【LLM】模型预训练、精调、对齐、量化支持列表如下:

Expand All @@ -113,14 +115,14 @@ Unified Checkpoint 大模型存储格式在模型参数分布上支持动态扩
| LLaMA | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| Qwen | ✅ | ✅ | ✅ | ✅ | ✅ | 🚧 | 🚧 | ✅ |
| Mixtral | ✅ | ✅ | ✅ | ❌ | 🚧 | 🚧 | 🚧 | 🚧 |
| Mistral | | ✅ | ✅ | ✅ | ✅ | 🚧 | 🚧 | ✅ |
| Mistral | | ✅ | ✅ | ✅ | ✅ | 🚧 | 🚧 | ✅ |
| Baichuan/Baichuan2 | ✅ | ✅ | ✅ | ✅ | ✅ | 🚧 | ✅ | ✅ |
| ChatGLM-6B | | ✅ | ✅ | ✅ | 🚧 | 🚧 | ✅ | ❌ |
| ChatGLM2/ChatGLM3 | | ✅ | ✅ | ✅ | 🚧 | 🚧 | ✅ | ✅ |
| Bloom | | ✅ | ✅ | ✅ | 🚧 | 🚧 | ✅ | ✅ |
| ChatGLM-6B | | ✅ | ✅ | ✅ | 🚧 | 🚧 | ✅ | ❌ |
| ChatGLM2/ChatGLM3 | | ✅ | ✅ | ✅ | 🚧 | 🚧 | ✅ | ✅ |
| Bloom | | ✅ | ✅ | ✅ | 🚧 | 🚧 | ✅ | ✅ |
| GPT-3 | ✅ | ✅ | 🚧 | 🚧 | 🚧 | 🚧 | 🚧 | ✅ |
| OPT | 🚧 | ✅ | ✅ | 🚧 | 🚧 | 🚧 | 🚧 | ✅ |

| OPT | | ✅ | ✅ | 🚧 | 🚧 | 🚧 | 🚧 | ✅ |
| Yuan2 | ✅ | ✅ | ✅ | 🚧 | 🚧 | 🚧 | 🚧 | ✅ |
------------------------------------------------------------------------------------------

## 安装
Expand Down
Loading