Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

use tensor.shape bug not paddle.shape(tensor) #11919

Merged
merged 3 commits into from
Apr 17, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion ppocr/modeling/backbones/rec_nrtr_mtb.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ def forward(self, images):
if self.cnn_num == 2:
# (b, w, h, c)
x = paddle.transpose(x, [0, 3, 2, 1])
x_shape = paddle.shape(x)
x_shape = x.shape
x = paddle.reshape(
x, [x_shape[0], x_shape[1], x_shape[2] * x_shape[3]])
return x
2 changes: 1 addition & 1 deletion ppocr/modeling/backbones/rec_svtrnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ def drop_path(x, drop_prob=0., training=False):
if drop_prob == 0. or not training:
return x
keep_prob = paddle.to_tensor(1 - drop_prob, dtype=x.dtype)
shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1)
shape = (x.shape[0], ) + (1, ) * (x.ndim - 1)
random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
random_tensor = paddle.floor(random_tensor) # binarize
output = x.divide(keep_prob) * random_tensor
Expand Down
4 changes: 2 additions & 2 deletions ppocr/modeling/backbones/rec_vit.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ def drop_path(x, drop_prob=0., training=False):
if drop_prob == 0. or not training:
return x
keep_prob = paddle.to_tensor(1 - drop_prob)
shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1)
shape = (x.shape[0], ) + (1, ) * (x.ndim - 1)
random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
random_tensor = paddle.floor(random_tensor) # binarize
output = x.divide(keep_prob) * random_tensor
Expand Down Expand Up @@ -243,7 +243,7 @@ def _init_weights(self, m):

def forward(self, x):
x = self.patch_embed(x).flatten(2).transpose((0, 2, 1))
x = x + self.pos_embed[:, 1:, :] #[:, :paddle.shape(x)[1], :]
x = x + self.pos_embed[:, 1:, :] #[:, :x.shape[1], :]
x = self.pos_drop(x)
for blk in self.blocks1:
x = blk(x)
Expand Down
6 changes: 3 additions & 3 deletions ppocr/modeling/backbones/rec_vit_parseq.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@ def drop_path(x, drop_prob=0., training=False):
if drop_prob == 0. or not training:
return x
keep_prob = paddle.to_tensor(1 - drop_prob, dtype=x.dtype)
shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1)
shape = (x.shape[0], ) + (1, ) * (x.ndim - 1)
random_tensor = keep_prob + paddle.rand(shape).astype(x.dtype)
random_tensor = paddle.floor(random_tensor) # binarize
output = x.divide(keep_prob) * random_tensor
Expand Down Expand Up @@ -113,7 +113,7 @@ def __init__(self,
self.proj_drop = nn.Dropout(proj_drop)

def forward(self, x):
# B= paddle.shape(x)[0]
# B= x.shape[0]
N, C = x.shape[1:]
qkv = self.qkv(x).reshape((-1, N, 3, self.num_heads, C //
self.num_heads)).transpose((2, 0, 3, 1, 4))
Expand Down Expand Up @@ -280,7 +280,7 @@ def _init_weights(self, m):
ones_(m.weight)

def forward_features(self, x):
B = paddle.shape(x)[0]
B = x.shape[0]
x = self.patch_embed(x)
x = x + self.pos_embed
x = self.pos_drop(x)
Expand Down
2 changes: 1 addition & 1 deletion ppocr/modeling/heads/rec_abinet_head.py
Original file line number Diff line number Diff line change
Expand Up @@ -285,7 +285,7 @@ def _get_mask(length, max_length):
Unmasked positions are filled with float(0.0).
"""
length = length.unsqueeze(-1)
B = paddle.shape(length)[0]
B = length.shape[0]
grid = paddle.arange(0, max_length).unsqueeze(0).tile([B, 1])
zero_mask = paddle.zeros([B, max_length], dtype='float32')
inf_mask = paddle.full([B, max_length], '-inf', dtype='float32')
Expand Down
4 changes: 2 additions & 2 deletions ppocr/modeling/heads/rec_aster_head.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,7 @@ def __init__(self, in_timestep, in_planes, mid_dim=4096, embed_dim=300):
self.embed_dim) # Embed encoder output to a word-embedding like

def forward(self, x):
x = paddle.reshape(x, [paddle.shape(x)[0], -1])
x = paddle.reshape(x, [x.shape[0], -1])
x = self.eEmbed(x)
return x

Expand All @@ -105,7 +105,7 @@ def __init__(self, in_channels, out_channels, sDim, attDim, max_len_labels):

def forward(self, x, embed):
x, targets, lengths = x
batch_size = paddle.shape(x)[0]
batch_size = x.shape[0]
# Decoder
state = self.decoder.get_initial_state(embed)
outputs = []
Expand Down
2 changes: 1 addition & 1 deletion ppocr/modeling/heads/rec_att_head.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ def _char_to_onehot(self, input_char, onehot_dim):
return input_ont_hot

def forward(self, inputs, targets=None, batch_max_length=25):
batch_size = paddle.shape(inputs)[0]
batch_size = inputs.shape[0]
num_steps = batch_max_length

hidden = paddle.zeros((batch_size, self.hidden_size))
Expand Down
2 changes: 1 addition & 1 deletion ppocr/modeling/heads/rec_cppd_head.py
Original file line number Diff line number Diff line change
Expand Up @@ -294,7 +294,7 @@ def forward_train(self, x, targets=None, epoch=0):
char_node_embed = self.char_node_embed(
paddle.arange(self.out_channels)).unsqueeze(0)
char_node_embed = paddle.tile(char_node_embed, [bs, 1, 1])
counting_char_num = paddle.shape(char_node_embed)[1]
counting_char_num = char_node_embed.shape[1]
pos_node_embed = self.pos_node_embed(paddle.arange(
self.max_len)).unsqueeze(0) + self.char_pos_embed
pos_node_embed = paddle.tile(pos_node_embed, [bs, 1, 1])
Expand Down
2 changes: 1 addition & 1 deletion ppocr/modeling/heads/rec_multi_head.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ def __init__(self, dim, w):
trunc_normal_(self.dec_pos_embed)

def forward(self,x):
x = x + self.dec_pos_embed[:, :paddle.shape(x)[1], :]
x = x + self.dec_pos_embed[:, :x.shape[1], :]
return x


Expand Down
18 changes: 9 additions & 9 deletions ppocr/modeling/heads/rec_nrtr_head.py
Original file line number Diff line number Diff line change
Expand Up @@ -150,7 +150,7 @@ def forward(self, src, targets=None):

def forward_test(self, src):

bs = paddle.shape(src)[0]
bs = src.shape[0]
if self.encoder is not None:
src = self.positional_encoding(src)
for encoder_layer in self.encoder:
Expand All @@ -164,7 +164,7 @@ def forward_test(self, src):
dec_seq_embed = self.embedding(dec_seq)
dec_seq_embed = self.positional_encoding(dec_seq_embed)
tgt_mask = self.generate_square_subsequent_mask(
paddle.shape(dec_seq_embed)[1])
dec_seq_embed.shape[1])
tgt = dec_seq_embed
for decoder_layer in self.decoder:
tgt = decoder_layer(tgt, memory, self_mask=tgt_mask)
Expand All @@ -175,7 +175,7 @@ def forward_test(self, src):
if paddle.equal_all(
preds_idx,
paddle.full(
paddle.shape(preds_idx), 3, dtype='int64')):
preds_idx.shape, 3, dtype='int64')):
break
preds_prob = paddle.max(word_prob, axis=-1)
dec_seq = paddle.concat(
Expand All @@ -198,7 +198,7 @@ def collect_active_part(beamed_tensor, curr_active_inst_idx,
n_prev_active_inst, n_bm):
""" Collect tensor parts associated to active instances. """

beamed_tensor_shape = paddle.shape(beamed_tensor)
beamed_tensor_shape = beamed_tensor.shape
n_curr_active_inst = len(curr_active_inst_idx)
new_shape = (n_curr_active_inst * n_bm, beamed_tensor_shape[1],
beamed_tensor_shape[2])
Expand Down Expand Up @@ -243,7 +243,7 @@ def predict_word(dec_seq, enc_output, n_active_inst, n_bm):
dec_seq = self.embedding(dec_seq)
dec_seq = self.positional_encoding(dec_seq)
tgt_mask = self.generate_square_subsequent_mask(
paddle.shape(dec_seq)[1])
dec_seq.shape[1])
tgt = dec_seq
for decoder_layer in self.decoder:
tgt = decoder_layer(tgt, enc_output, self_mask=tgt_mask)
Expand Down Expand Up @@ -294,7 +294,7 @@ def collect_hypothesis_and_scores(inst_dec_beams, n_best):
src_enc = images

n_bm = self.beam_size
src_shape = paddle.shape(src_enc)
src_shape = src_enc.shape
inst_dec_beams = [Beam(n_bm) for _ in range(1)]
active_inst_idx_list = list(range(1))
# Repeat data for beam search
Expand Down Expand Up @@ -500,7 +500,7 @@ def forward(self, x):
>>> output = pos_encoder(x)
"""
x = x.transpose([1, 0, 2])
x = x + self.pe[:paddle.shape(x)[0], :]
x = x + self.pe[:x.shape[0], :]
return self.dropout(x).transpose([1, 0, 2])


Expand Down Expand Up @@ -552,13 +552,13 @@ def forward(self, x):
Examples:
>>> output = pos_encoder(x)
"""
w_pe = self.pe[:paddle.shape(x)[-1], :]
w_pe = self.pe[:x.shape[-1], :]
w1 = self.linear1(self.avg_pool_1(x).squeeze()).unsqueeze(0)
w_pe = w_pe * w1
w_pe = paddle.transpose(w_pe, [1, 2, 0])
w_pe = paddle.unsqueeze(w_pe, 2)

h_pe = self.pe[:paddle.shape(x).shape[-2], :]
h_pe = self.pe[:x.shape.shape[-2], :]
w2 = self.linear2(self.avg_pool_2(x).squeeze()).unsqueeze(0)
h_pe = h_pe * w2
h_pe = paddle.transpose(h_pe, [1, 2, 0])
Expand Down
8 changes: 4 additions & 4 deletions ppocr/modeling/heads/rec_sar_head.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,7 +83,7 @@ def __init__(self,

def forward(self, feat, img_metas=None):
if img_metas is not None:
assert len(img_metas[0]) == paddle.shape(feat)[0]
assert len(img_metas[0]) == feat.shape[0]

valid_ratios = None
if img_metas is not None and self.mask:
Expand All @@ -99,7 +99,7 @@ def forward(self, feat, img_metas=None):
if valid_ratios is not None:
valid_hf = []
T = paddle.shape(holistic_feat)[1]
for i in range(paddle.shape(valid_ratios)[0]):
for i in range(valid_ratios.shape[0]):
valid_step = paddle.minimum(
T, paddle.ceil(valid_ratios[i] * T).astype(T.dtype)) - 1
valid_hf.append(holistic_feat[i, valid_step, :])
Expand Down Expand Up @@ -253,7 +253,7 @@ def _2d_attention(self,

if valid_ratios is not None:
# cal mask of attention weight
for i in range(paddle.shape(valid_ratios)[0]):
for i in range(valid_ratios.shape[0]):
valid_width = paddle.minimum(
w, paddle.ceil(valid_ratios[i] * w).astype("int32"))
if valid_width < w:
Expand Down Expand Up @@ -292,7 +292,7 @@ def forward_train(self, feat, out_enc, label, img_metas):
img_metas: [label, valid_ratio]
'''
if img_metas is not None:
assert paddle.shape(img_metas[0])[0] == paddle.shape(feat)[0]
assert img_metas[0].shape[0] == feat.shape[0]

valid_ratios = None
if img_metas is not None and self.mask:
Expand Down
2 changes: 1 addition & 1 deletion ppocr/modeling/heads/rec_satrn_head.py
Original file line number Diff line number Diff line change
Expand Up @@ -283,7 +283,7 @@ def forward(self, feat, valid_ratios=None):
Tensor: A tensor of shape :math:`(N, T, D_m)`.
"""
if valid_ratios is None:
bs = paddle.shape(feat)[0]
bs = feat.shape[0]
valid_ratios = paddle.full((bs, 1), 1., dtype=paddle.float32)

feat = self.position_enc(feat)
Expand Down
2 changes: 1 addition & 1 deletion ppocr/modeling/heads/rec_spin_att_head.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ def _char_to_onehot(self, input_char, onehot_dim):
return input_ont_hot

def forward(self, inputs, targets=None, batch_max_length=25):
batch_size = paddle.shape(inputs)[0]
batch_size = inputs.shape[0]
num_steps = batch_max_length + 1 # +1 for [sos] at end of sentence

hidden = (paddle.zeros((batch_size, self.hidden_size)),
Expand Down
4 changes: 2 additions & 2 deletions ppocr/modeling/heads/sr_rensnet_transformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -78,7 +78,7 @@ def __init__(self, h, d_model, dropout=0.1, compress_attention=False):
def forward(self, query, key, value, mask=None, attention_map=None):
if mask is not None:
mask = mask.unsqueeze(1)
nbatches = paddle.shape(query)[0]
nbatches = query.shape[0]

query, key, value = \
[paddle.transpose(l(x).reshape([nbatches, -1, self.h, self.d_k]), [0,2,1,3])
Expand Down Expand Up @@ -230,7 +230,7 @@ def __init__(self, dropout, dim, max_len=5000):
self.register_buffer('pe', pe)

def forward(self, x):
x = x + self.pe[:, :paddle.shape(x)[1]]
x = x + self.pe[:, :x.shape[1]]
return self.dropout(x)


Expand Down
4 changes: 2 additions & 2 deletions ppocr/modeling/heads/table_master_head.py
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,7 @@ def make_mask(self, tgt):
"""
trg_pad_mask = (tgt != self.PAD).unsqueeze(1).unsqueeze(3)

tgt_len = paddle.shape(tgt)[1]
tgt_len = tgt.shape[1]
trg_sub_mask = paddle.tril(
paddle.ones(
([tgt_len, tgt_len]), dtype=paddle.float32))
Expand Down Expand Up @@ -279,5 +279,5 @@ def __init__(self, d_model, dropout=0., max_len=5000):
self.register_buffer('pe', pe)

def forward(self, feat, **kwargs):
feat = feat + self.pe[:, :paddle.shape(feat)[1]] # pe 1*5000*512
feat = feat + self.pe[:, :feat.shape[1]] # pe 1*5000*512
return self.dropout(feat)
2 changes: 1 addition & 1 deletion ppocr/modeling/necks/csp_pan.py
Original file line number Diff line number Diff line change
Expand Up @@ -305,7 +305,7 @@ def forward(self, inputs):
feat_heigh = inner_outs[0]
feat_low = inputs[idx - 1]
upsample_feat = F.upsample(
feat_heigh, size=paddle.shape(feat_low)[2:4], mode="nearest")
feat_heigh, size=feat_low.shape[2:4], mode="nearest")

inner_out = self.top_down_blocks[len(self.in_channels) - 1 - idx](
paddle.concat([upsample_feat, feat_low], 1))
Expand Down
2 changes: 1 addition & 1 deletion ppocr/modeling/necks/sast_fpn.py
Original file line number Diff line number Diff line change
Expand Up @@ -222,7 +222,7 @@ def _cal_fweight(self, f, shape):
return f_weight

def forward(self, f_common):
f_shape = paddle.shape(f_common)
f_shape = f_common.shape
# print('f_shape: ', f_shape)

f_theta = self.theta_conv(f_common)
Expand Down
4 changes: 2 additions & 2 deletions ppocr/modeling/transforms/tbsrn.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,7 +80,7 @@ def forward(self, conv_feature):
global_info: (batch, embedding_size, 1, 1)
conv_feature: (batch, channel, H, W)
'''
batch = paddle.shape(conv_feature)[0]
batch = conv_feature.shape[0]
position2d = positionalencoding2d(
64, 16, 64).cast('float32').unsqueeze(0).reshape([1, 64, 1024])
position2d = position2d.tile([batch, 1, 1])
Expand Down Expand Up @@ -276,7 +276,7 @@ def forward(self, x):
residual = self.conv2(residual)
residual = self.bn2(residual)

size = paddle.shape(residual)
size = residual.shape
residual = residual.reshape([size[0], size[1], -1])
residual = self.feature_enhancer(residual)
residual = residual.reshape([size[0], size[1], size[2], size[3]])
Expand Down
2 changes: 1 addition & 1 deletion ppocr/modeling/transforms/tps_spatial_transformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -152,7 +152,7 @@ def forward(self, input, source_control_points):
assert source_control_points.ndimension() == 3
assert source_control_points.shape[1] == self.num_control_points
assert source_control_points.shape[2] == 2
batch_size = paddle.shape(source_control_points)[0]
batch_size = source_control_points.shape[0]

padding_matrix = paddle.expand(
self.padding_matrix, shape=[batch_size, 3, 2])
Expand Down