Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

model MIND #398

Merged
merged 4 commits into from
Mar 23, 2021
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file added doc/imgs/mind.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
123 changes: 123 additions & 0 deletions models/recall/mind/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,123 @@
# MIND(Multi-Interest Network with Dynamic Routing)

以下是本例的简要目录结构及说明:
```shell
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

readme中,可以直接拿出来执行的用bash,不能执行的直接用```即可

├── data #样例数据
│ ├── demo #demo训练数据
│ │ └── demo.txt
│ ├── processs.py #处理全量数据的脚本
│ ├── run.sh #全量数据下载的脚本
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

可以将处理完成的全量数据加入BOS中,run.sh放在paddlerec/dataset目录下,方便用户直接使用以及切换数据集

│ └── valid #demo测试数据
│ └── part-0
├── config.yaml #数据配置
├── dygraph_model.py #构建动态图
├── evaluate_dygraph.py #评测动态图
├── evaluate_reader.py #评测数据reader
├── evaluate_static.py #评测静态图
├── mind_reader.py #训练数据reader
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

reader文件的名称通常以数据集名称为前缀,方便使用相同数据的模型复用

├── net.py #模型核心组网(动静合一)
└── static_model.py #构建静态图
```

注:在阅读该示例前,建议您先了解以下内容:

[paddlerec入门教程](https://github.com/PaddlePaddle/PaddleRec/blob/master/README.md)

## 内容
- [模型简介](#模型简介)
- [数据准备](#数据准备)
- [运行环境](#运行环境)
- [快速开始](#快速开始)
- [模型组网](#模型组网)
- [效果复现](#效果复现)
- [进阶使用](#进阶使用)
- [FAQ](#FAQ)

## 模型简介
本例实现了基于动态路由的用户多兴趣网络,如下图所示:
<p align="center">
<img align="center" src="../../../doc/imgs/mind.png">
<p>
Multi-Interest Network with Dynamic Routing (MIND) 是通过构建用户和商品向量在统一的向量空间的多个用户兴趣向量,以表达用户多样的兴趣分布。然后通过向量召回技术,利用这多个兴趣向量去检索出TopK个与其近邻的商品向量,得到 TopK个 用户感兴趣的商品。其核心是一个基于胶囊网络和动态路由的(B2I Dynamic Routing)Multi-Interest Extractor Layer。

推荐参考论文:[http://cn.arxiv.org/abs/1904.08030](http://cn.arxiv.org/abs/1904.08030)

## 数据准备
在模型目录的data目录下为您准备了快速运行的示例数据,训练数据、测试数据、词表文件依次保存在data/train, data/test文件夹中。若需要使用全量数据可以参考下方效果复现部分。

训练数据的格式如下:
```
0,17978,0
0,901,1
0,97224,2
0,774,3
0,85757,4
```
分别表示uid、item_id和点击的顺序(时间戳)

测试数据的格式如下:
```
user_id:543354 hist_item:143963 hist_item:157508 hist_item:105486 hist_item:40502 hist_item:167813 hist_item:233564 hist_item:221866 hist_item:280310 hist_item:61638 hist_item:158494 hist_item:74449 hist_item:283630 hist_item:135155 hist_item:96176 hist_item:20139 hist_item:89420 hist_item:247990 hist_item:126605 target_item:172183 target_item:114193 target_item:79966 target_item:134420 target_item:50557
user_id:543362 hist_item:119546 hist_item:78597 hist_item:86809 hist_item:63551 target_item:326165
user_id:543366 hist_item:45463 hist_item:9903 hist_item:3956 hist_item:49726 target_item:199426
```
其中`hist_item`和`target_item`均是变长序列,读取方式可以看`evaluate_reader.py`

## 运行环境
PaddlePaddle>=2.0

python 2.7/3.5/3.6/3.7

os : windows/linux/macos

## 快速开始

在mind模型目录的快速执行命令如下:
```
# 进入模型目录
# cd models/recall/word2vec # 在任意目录均可运行
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

目录名称改一下

# 动态图训练
python -u ../../../tools/trainer.py -m config.yaml
# 动态图预测
python -u evaluate_dygraph.py -m config.yaml -top_n 50 #对测试数据进行预测,并通过faiss召回候选结果评测Reacll、NDCG、HitRate指标
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

如果需要重写tools下的infer.py和static_infer.py,需要保持命名上的统一,名称还叫infer.py。可以参考word2vec


# 静态图训练
python -u ../../../tools/static_trainer.py -m config.yaml # 全量数据运行config_bigdata.yaml
# 静态图预测
python -u evaluate_static.py -m config.yaml -top_n 50 #对测试数据进行预测,并通过faiss召回候选结果评测Reacll、NDCG、HitRate指标
```

## 模型组网

细节见上面[模型简介](#模型简介)部分

### 效果复现
由于原始论文没有提供实验的复现细节,为了方便使用者能够快速的跑通每一个模型,我们使用论文[ComiRec](https://arxiv.org/abs/2005.09347)提供的AmazonBook数据集和训练任务进行复现。我们在每个模型下都提供了样例数据。如果需要复现readme中的效果,请按如下步骤依次操作即可。

在全量数据下模型的指标如下:
| 模型 | batch_size | epoch_num| Recall@50 | NDCG@50 | HitRate@50 |Time of each epoch |
| :------| :------ | :------ | :------| :------ | :------| :------ |
| mind(静态图) | 128 | 6 | 4.61% | 11.28%| 18.92%| -- |
| mind(动态图) | 128 | 6 | 4.57% | 11.25%| 18.99%| -- |

1. 确认您当前所在目录为PaddleRec/models/recall/mind
2. 进入data目录下执行run.sh脚本,会下载处理完成的AmazonBook数据集,并解压到指定目录
```bash
cd ./data
sh run.sh
```
3. 切回模型目录,执行命令运行全量数据
```bash
d - # 切回模型目录
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这里应该是cd命令

# 动态图训练
python -u ../../../tools/trainer.py -m config.yaml # 全量数据运行config.yaml
python -u evaluate_dygraph.py -m config.yaml # 全量数据运行config.yaml
```

## 进阶使用

## FAQ

## 参考

数据集及训练任务参考了[ComiRec](https://github.com/THUDM/ComiRec)
51 changes: 51 additions & 0 deletions models/recall/mind/config.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

runner:
train_data_dir: "data/train"
train_reader_path: "mind_reader" # importlib format
use_gpu: True
use_auc: False
train_batch_size: 128
epochs: 6
print_interval: 500
model_save_path: "output_model_mind"
infer_batch_size: 128
infer_reader_path: "evaluate_reader" # importlib format
test_data_dir: "data/valid"
infer_load_path: "output_model_mind"
infer_start_epoch: 0
infer_end_epoch: 4

# distribute_config
# sync_mode: "async"
# split_file_list: False
# thread_num: 1


# hyper parameters of user-defined network
hyper_parameters:
# optimizer config
optimizer:
class: Adam
learning_rate: 0.005
# strategy: async
# user-defined <key, value> pairs
item_count: 367983
embedding_dim: 64
hidden_size: 64
neg_samples: 1280
maxlen: 20
pow_p: 1.0
distributed_embedding: 0
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这里为什么是0?

76 changes: 76 additions & 0 deletions models/recall/mind/data/processs.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import os
import json
import numpy as np
import argparse
import random

parser = argparse.ArgumentParser()
parser.add_argument(
"-type", type=str, default="train", help="train|valid|test")
parser.add_argument("-maxlen", type=int, default=20)


def load_graph(source):
graph = {}
with open(source) as fr:
for line in fr:
conts = line.strip().split(',')
user_id = int(conts[0])
item_id = int(conts[1])
time_stamp = int(conts[2])
if user_id not in graph:
graph[user_id] = []
graph[user_id].append((item_id, time_stamp))

for user_id, value in graph.items():
value.sort(key=lambda x: x[1])
graph[user_id] = [x[0] for x in value]
return graph


if __name__ == "__main__":
args = parser.parse_args()
filelist = []
for i in range(10):
filelist.append(open(args.type + "/part-%d" % (i), "w"))
action_graph = load_graph("data/book_data/book_" + args.type + ".txt")
if args.type == "train":
for uid, item_list in action_graph.items():
for i in range(4, len(item_list)):
if i >= args.maxlen:
hist_item = item_list[i - args.maxlen:i]
else:
hist_item = item_list[:i]
target_item = item_list[i]
print(
" ".join(["user_id:" + str(uid)] + [
"hist_item:" + str(n) for n in hist_item
] + ["target_item:" + str(target_item)]),
file=random.choice(filelist))
else:
for uid, item_list in action_graph.items():
k = int(len(item_list) * 0.8)
if k >= args.maxlen:
hist_item = item_list[k - args.maxlen:k]
else:
hist_item = item_list[:k]
target_item = item_list[k:]
print(
" ".join(["user_id:" + str(uid), "target_item:0"] + [
"hist_item:" + str(n) for n in hist_item
] + ["eval_item:" + str(n) for n in target_item]),
file=random.choice(filelist))
13 changes: 13 additions & 0 deletions models/recall/mind/data/run.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@

wget https://cloud.tsinghua.edu.cn/f/e5c4211255bc40cba828/?dl=1

tar -xvf data.tar.gz

rm -rf train valid
mkdir train
mkdir valid

mv data/book_data/book_train.txt train
python preprocess.py -type valid -maxlen 20
rm -rf data.tar.gz
rm -rf data
Loading