Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

【PPSCI Export&Infer No.7】 volterra_ide #807

Merged
merged 2 commits into from
Mar 15, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 12 additions & 0 deletions docs/zh/examples/volterra_ide.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,18 @@
python volterra_ide.py mode=eval EVAL.pretrained_model_path=https://paddle-org.bj.bcebos.com/paddlescience/models/volterra_ide/volterra_ide_pretrained.pdparams
```

=== "模型导出命令"

``` sh
python volterra_ide.py mode=export
```

GreatV marked this conversation as resolved.
Show resolved Hide resolved
=== "模型推理命令"

``` sh
python volterra_ide.py mode=infer
```

GreatV marked this conversation as resolved.
Show resolved Hide resolved
| 预训练模型 | 指标 |
|:--| :--|
| [volterra_ide_pretrained.pdparams](https://paddle-org.bj.bcebos.com/paddlescience/models/volterra_ide/volterra_ide_pretrained.pdparams) | loss(L2Rel_Validator): 0.00023 <br> L2Rel.u(L2Rel_Validator): 0.00023 |
Expand Down
17 changes: 17 additions & 0 deletions examples/ide/conf/volterra_ide.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -61,3 +61,20 @@ EVAL:
pretrained_model_path: null
eval_with_no_grad: true
npoint_eval: 100

INFER:
pretrained_model_path: https://paddle-org.bj.bcebos.com/paddlescience/models/volterra_ide/volterra_ide_pretrained.pdparams
export_path: ./inference/volterra_ide
pdmodel_path: ${INFER.export_path}.pdmodel
pdpiparams_path: ${INFER.export_path}.pdiparams
device: gpu
engine: native
precision: fp32
onnx_path: ${INFER.export_path}.onnx
ir_optim: true
min_subgraph_size: 10
gpu_mem: 4000
gpu_id: 0
max_batch_size: 64
num_cpu_threads: 4
batch_size: 16
68 changes: 67 additions & 1 deletion examples/ide/volterra_ide.py
Original file line number Diff line number Diff line change
Expand Up @@ -254,14 +254,80 @@ def u_solution_func(in_) -> np.ndarray:
plt.savefig(osp.join(cfg.output_dir, "./Volterra_IDE.png"), dpi=200)


def export(cfg: DictConfig):
# set model
model = ppsci.arch.MLP(**cfg.MODEL)

# initialize solver
solver = ppsci.solver.Solver(
model,
pretrained_model_path=cfg.INFER.pretrained_model_path,
)
# export model
from paddle.static import InputSpec

input_spec = [
{
key: InputSpec([None, 1], "float32", name=key)
for key in cfg.MODEL.input_keys
},
]
solver.export(input_spec, cfg.INFER.export_path)


def inference(cfg: DictConfig):
from deploy.python_infer import pinn_predictor

predictor = pinn_predictor.PINNPredictor(cfg)

# set geometry
geom = {"timedomain": ppsci.geometry.TimeDomain(*cfg.BOUNDS)}

input_data = geom["timedomain"].uniform_points(cfg.EVAL.npoint_eval)
input_dict = {"x": input_data}

output_dict = predictor.predict(
{key: input_dict[key] for key in cfg.MODEL.input_keys}, cfg.INFER.batch_size
)

# mapping data to cfg.INFER.output_keys
output_dict = {
store_key: output_dict[infer_key]
for store_key, infer_key in zip(cfg.MODEL.output_keys, output_dict.keys())
}

def u_solution_func(in_) -> np.ndarray:
if isinstance(in_["x"], paddle.Tensor):
return paddle.exp(-in_["x"]) * paddle.cosh(in_["x"])
return np.exp(-in_["x"]) * np.cosh(in_["x"])

label_data = u_solution_func({"x": input_data})
output_data = output_dict["u"]

# save result
plt.plot(input_data, label_data, "-", label=r"$u(t)$")
plt.plot(input_data, output_data, "o", label=r"$\hat{u}(t)$", markersize=4.0)
plt.legend()
plt.xlabel(r"$t$")
plt.ylabel(r"$u$")
plt.title(r"$u-t$")
plt.savefig("./Volterra_IDE_pred.png", dpi=200)


@hydra.main(version_base=None, config_path="./conf", config_name="volterra_ide.yaml")
def main(cfg: DictConfig):
if cfg.mode == "train":
train(cfg)
elif cfg.mode == "eval":
evaluate(cfg)
elif cfg.mode == "export":
export(cfg)
elif cfg.mode == "infer":
inference(cfg)
else:
raise ValueError(f"cfg.mode should in ['train', 'eval'], but got '{cfg.mode}'")
raise ValueError(
f"cfg.mode should in ['train', 'eval', 'export', 'infer'], but got '{cfg.mode}'"
)


if __name__ == "__main__":
Expand Down