Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

【PPSCI Export&Infer No.24】 biharmonic2d #858

Merged
merged 2 commits into from
Apr 22, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 12 additions & 0 deletions docs/zh/examples/biharmonic2d.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,18 @@
python biharmonic2d.py mode=eval EVAL.pretrained_model_path=https://paddle-org.bj.bcebos.com/paddlescience/models/biharmonic2d/biharmonic2d_pretrained.pdparams
```

=== "模型导出命令"

``` sh
python biharmonic2d.py mode=export
```

=== "模型推理命令"

``` sh
python biharmonic2d.py mode=infer
```

| 预训练模型 | 指标 |
|:--| :--|
| [biharmonic2d_pretrained.pdparams](https://paddle-org.bj.bcebos.com/paddlescience/models/biharmonic2d/biharmonic2d_pretrained.pdparams) | l2_error: 0.02774 |
Expand Down
99 changes: 96 additions & 3 deletions examples/biharmonic2d/biharmonic2d.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@ def plotting(figname, output_dir, data, griddata_points, griddata_xi, boundary):
for i, key in enumerate(data):
plot_data = griddata(
griddata_points,
data[key].numpy().flatten(),
data[key].flatten(),
griddata_xi,
method="cubic",
)
Expand Down Expand Up @@ -343,7 +343,94 @@ def compute_outs(w, x, y):
plotting(
"eval_Mx_Mxy_My_Qx_Qy_w",
cfg.output_dir,
outs,
{k: v.numpy() for k, v in outs.items()},
griddata_points,
griddata_xi,
boundary,
)


def export(cfg: DictConfig):
from paddle import nn
from paddle.static import InputSpec

# set models
disp_net = ppsci.arch.MLP(**cfg.MODEL)

# load pretrained model
solver = ppsci.solver.Solver(
model=disp_net, pretrained_model_path=cfg.INFER.pretrained_model_path
)

class Wrapped_Model(nn.Layer):
def __init__(self, model):
super().__init__()
self.model = model

def forward(self, x):
model_out = self.model(x)
outs = self.compute_outs(model_out["u"], x["x"], x["y"])
return outs

def compute_outs(self, w, x, y):
D = cfg.E * (cfg.HEIGHT**3) / (12.0 * (1.0 - cfg.NU**2))
w_x2 = hessian(w, x)
w_y2 = hessian(w, y)
w_x_y = jacobian(jacobian(w, x), y)
M_x = -(w_x2 + cfg.NU * w_y2) * D
M_y = -(cfg.NU * w_x2 + w_y2) * D
M_xy = (1 - cfg.NU) * w_x_y * D
Q_x = -jacobian((w_x2 + w_y2), x) * D
Q_y = -jacobian((w_x2 + w_y2), y) * D
return {"Mx": M_x, "Mxy": M_xy, "My": M_y, "Qx": Q_x, "Qy": Q_y, "w": w}

solver.model = Wrapped_Model(solver.model)

# export models
input_spec = [
{key: InputSpec([None, 1], "float32", name=key) for key in disp_net.input_keys},
]
solver.export(input_spec, cfg.INFER.export_path)


def inference(cfg: DictConfig):
from deploy.python_infer import pinn_predictor

# set model predictor
predictor = pinn_predictor.PINNPredictor(cfg)

# generate samples
num_x = 201
num_y = 301
x_grad, y_grad = np.meshgrid(
np.linspace(
start=0, stop=cfg.LENGTH, num=num_x, endpoint=True, dtype=np.float32
),
np.linspace(
start=0, stop=cfg.WIDTH, num=num_y, endpoint=True, dtype=np.float32
),
)
x_faltten = x_grad.reshape(-1, 1)
y_faltten = y_grad.reshape(-1, 1)

output_dict = predictor.predict(
{"x": x_faltten, "y": y_faltten}, cfg.INFER.batch_size
)

# mapping data to cfg.INFER.output_keys
output_dict = {
store_key: output_dict[infer_key]
for store_key, infer_key in zip(cfg.INFER.output_keys, output_dict.keys())
}

# plotting
griddata_points = np.concatenate([x_faltten, y_faltten], axis=-1)
griddata_xi = (x_grad, y_grad)
boundary = [0, cfg.LENGTH, 0, cfg.WIDTH]
plotting(
"eval_Mx_Mxy_My_Qx_Qy_w",
cfg.output_dir,
output_dict,
griddata_points,
griddata_xi,
boundary,
Expand All @@ -356,8 +443,14 @@ def main(cfg: DictConfig):
train(cfg)
elif cfg.mode == "eval":
evaluate(cfg)
elif cfg.mode == "export":
export(cfg)
elif cfg.mode == "infer":
inference(cfg)
else:
raise ValueError(f"cfg.mode should in ['train', 'eval'], but got '{cfg.mode}'")
raise ValueError(
f"cfg.mode should in ['train', 'eval', 'export', 'infer'], but got '{cfg.mode}'"
)


if __name__ == "__main__":
Expand Down
20 changes: 20 additions & 0 deletions examples/biharmonic2d/conf/biharmonic2d.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,8 @@ hydra:
- TRAIN.checkpoint_path
- TRAIN.pretrained_model_path
- EVAL.pretrained_model_path
- INFER.pretrained_model_path
- INFER.export_path
- mode
- output_dir
- log_freq
Expand Down Expand Up @@ -72,3 +74,21 @@ EVAL:
eval_with_no_grad: true
batch_size:
sup_validator: 128

INFER:
pretrained_model_path: https://paddle-org.bj.bcebos.com/paddlescience/models/biharmonic2d/biharmonic2d_pretrained.pdparams
export_path: ./inference/biharmonic2d
pdmodel_path: ${INFER.export_path}.pdmodel
pdpiparams_path: ${INFER.export_path}.pdiparams
output_keys: ["Mx", "Mxy", "My", "Qx", "Qy", "w"]
device: gpu
engine: native
precision: fp32
onnx_path: ${INFER.export_path}.onnx
ir_optim: true
min_subgraph_size: 10
gpu_mem: 4000
gpu_id: 0
max_batch_size: 128
num_cpu_threads: 4
batch_size: 128