Skip to content

Commit

Permalink
Add is_cptp predicate (quantumlib#4365)
Browse files Browse the repository at this point in the history
As requested in quantumlib#4194. Can be used for quantumlib#2271.

This predicate is meant to be invoked when constructing a channel to verify that the provided Kraus operators actually describe a valid quantum channel. Recommendations for cleaner `is_cptp` behavior or additional test cases are welcome.
  • Loading branch information
95-martin-orion authored Jul 29, 2021
1 parent 9ee5533 commit 6d79f4d
Show file tree
Hide file tree
Showing 4 changed files with 64 additions and 0 deletions.
1 change: 1 addition & 0 deletions cirq/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -130,6 +130,7 @@
dot,
expand_matrix_in_orthogonal_basis,
hilbert_schmidt_inner_product,
is_cptp,
is_diagonal,
is_hermitian,
is_normal,
Expand Down
1 change: 1 addition & 0 deletions cirq/linalg/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,6 +61,7 @@

from cirq.linalg.predicates import (
allclose_up_to_global_phase,
is_cptp,
is_diagonal,
is_hermitian,
is_normal,
Expand Down
15 changes: 15 additions & 0 deletions cirq/linalg/predicates.py
Original file line number Diff line number Diff line change
Expand Up @@ -149,6 +149,21 @@ def is_normal(matrix: np.ndarray, *, rtol: float = 1e-5, atol: float = 1e-8) ->
return matrix_commutes(matrix, matrix.T.conj(), rtol=rtol, atol=atol)


def is_cptp(*, kraus_ops: Sequence[np.ndarray], rtol: float = 1e-5, atol: float = 1e-8):
"""Determines if a channel is completely positive trace preserving (CPTP).
A channel composed of Kraus operators K[0:n] is a CPTP map if the sum of
the products `adjoint(K[i]) * K[i])` is equal to 1.
Args:
kraus_ops: The Kraus operators of the channel to check.
rtol: The relative tolerance on equality.
atol: The absolute tolerance on equality.
"""
sum_ndarray = cast(np.ndarray, sum(matrix.T.conj() @ matrix for matrix in kraus_ops))
return np.allclose(sum_ndarray, np.eye(*sum_ndarray.shape), rtol=rtol, atol=atol)


def matrix_commutes(
m1: np.ndarray, m2: np.ndarray, *, rtol: float = 1e-5, atol: float = 1e-8
) -> bool:
Expand Down
47 changes: 47 additions & 0 deletions cirq/linalg/predicates_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -292,6 +292,53 @@ def test_is_normal_tolerance():
assert not cirq.is_normal(np.array([[0, 0.5, 0], [0, 0, 0.6], [0, 0, 0]]), atol=atol)


def test_is_cptp():
rt2 = np.sqrt(0.5)
# Amplitude damping with gamma=0.5.
assert cirq.is_cptp(kraus_ops=[np.array([[1, 0], [0, rt2]]), np.array([[0, rt2], [0, 0]])])
# Depolarizing channel with p=0.75.
assert cirq.is_cptp(
kraus_ops=[
np.array([[1, 0], [0, 1]]) * 0.5,
np.array([[0, 1], [1, 0]]) * 0.5,
np.array([[0, -1j], [1j, 0]]) * 0.5,
np.array([[1, 0], [0, -1]]) * 0.5,
]
)

assert not cirq.is_cptp(kraus_ops=[np.array([[1, 0], [0, 1]]), np.array([[0, 1], [0, 0]])])
assert not cirq.is_cptp(
kraus_ops=[
np.array([[1, 0], [0, 1]]),
np.array([[0, 1], [1, 0]]),
np.array([[0, -1j], [1j, 0]]),
np.array([[1, 0], [0, -1]]),
]
)

# Makes 4 2x2 kraus ops.
one_qubit_u = cirq.testing.random_unitary(8)
one_qubit_kraus = np.reshape(one_qubit_u[:, :2], (-1, 2, 2))
assert cirq.is_cptp(kraus_ops=one_qubit_kraus)

# Makes 16 4x4 kraus ops.
two_qubit_u = cirq.testing.random_unitary(64)
two_qubit_kraus = np.reshape(two_qubit_u[:, :4], (-1, 4, 4))
assert cirq.is_cptp(kraus_ops=two_qubit_kraus)


def test_is_cptp_tolerance():
rt2_ish = np.sqrt(0.5) - 0.01
atol = 0.25
# Moderately-incorrect amplitude damping with gamma=0.5.
assert cirq.is_cptp(
kraus_ops=[np.array([[1, 0], [0, rt2_ish]]), np.array([[0, rt2_ish], [0, 0]])], atol=atol
)
assert not cirq.is_cptp(
kraus_ops=[np.array([[1, 0], [0, rt2_ish]]), np.array([[0, rt2_ish], [0, 0]])], atol=1e-8
)


def test_commutes():
assert matrix_commutes(np.empty((0, 0)), np.empty((0, 0)))
assert not matrix_commutes(np.empty((1, 0)), np.empty((0, 1)))
Expand Down

0 comments on commit 6d79f4d

Please sign in to comment.