Skip to content

Commit

Permalink
Remove use of depreciated function setPolynomialFit in mls
Browse files Browse the repository at this point in the history
  • Loading branch information
Levi-Armstrong committed Sep 19, 2017
1 parent b34691d commit c60e97c
Show file tree
Hide file tree
Showing 2 changed files with 14 additions and 19 deletions.
6 changes: 3 additions & 3 deletions test/surface/test_moving_least_squares.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,7 @@ TEST (PCL, MovingLeastSquares)
// Set parameters
mls.setInputCloud (cloud);
mls.setComputeNormals (true);
mls.setPolynomialFit (true);
mls.setPolynomialOrder (2);
mls.setSearchMethod (tree);
mls.setSearchRadius (0.03);

Expand All @@ -92,7 +92,7 @@ TEST (PCL, MovingLeastSquares)
MovingLeastSquaresOMP<PointXYZ, PointNormal> mls_omp;
mls_omp.setInputCloud (cloud);
mls_omp.setComputeNormals (true);
mls_omp.setPolynomialFit (true);
mls_omp.setPolynomialOrder (2);
mls_omp.setSearchMethod (tree);
mls_omp.setSearchRadius (0.03);
mls_omp.setNumberOfThreads (4);
Expand Down Expand Up @@ -123,7 +123,7 @@ TEST (PCL, MovingLeastSquares)
// Set parameters
mls_upsampling.setInputCloud (cloud);
mls_upsampling.setComputeNormals (true);
mls_upsampling.setPolynomialFit (true);
mls_upsampling.setPolynomialOrder (2);
mls_upsampling.setSearchMethod (tree);
mls_upsampling.setSearchRadius (0.03);
mls_upsampling.setUpsamplingMethod (MovingLeastSquares<PointXYZ, PointNormal>::SAMPLE_LOCAL_PLANE);
Expand Down
27 changes: 11 additions & 16 deletions tools/mls_smoothing.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,6 @@ using namespace pcl::io;
using namespace pcl::console;

int default_polynomial_order = 2;
bool default_use_polynomial_fit = false;
double default_search_radius = 0.0,
default_sqr_gauss_param = 0.0;

Expand All @@ -63,9 +62,7 @@ printHelp (int, char **argv)
print_value ("%f", default_search_radius); print_info (")\n");
print_info (" -sqr_gauss_param X = parameter used for the distance based weighting of neighbors (recommended = search_radius^2) (default: ");
print_value ("%f", default_sqr_gauss_param); print_info (")\n");
print_info (" -use_polynomial_fit X = decides whether the surface and normal are approximated using a polynomial or only via tangent estimation (default: ");
print_value ("%d", default_use_polynomial_fit); print_info (")\n");
print_info (" -polynomial_order X = order of the polynomial to be fit (implicitly, use_polynomial_fit = 1) (default: ");
print_info (" -polynomial_order X = order of the polynomial to be fit (polynomial_order > 1, indicates using a polynomial fit) (default: ");
print_value ("%d", default_polynomial_order); print_info (")\n");
}

Expand All @@ -85,9 +82,12 @@ loadCloud (const std::string &filename, pcl::PCLPointCloud2 &cloud)
}

void
compute (const pcl::PCLPointCloud2::ConstPtr &input, pcl::PCLPointCloud2 &output,
double search_radius, bool sqr_gauss_param_set, double sqr_gauss_param,
bool use_polynomial_fit, int polynomial_order)
compute (const pcl::PCLPointCloud2::ConstPtr &input,
pcl::PCLPointCloud2 &output,
double search_radius,
bool sqr_gauss_param_set,
double sqr_gauss_param,
int polynomial_order)
{

PointCloud<PointXYZ>::Ptr xyz_cloud_pre (new pcl::PointCloud<PointXYZ> ()),
Expand All @@ -111,7 +111,6 @@ compute (const pcl::PCLPointCloud2::ConstPtr &input, pcl::PCLPointCloud2 &output
mls.setInputCloud (xyz_cloud);
mls.setSearchRadius (search_radius);
if (sqr_gauss_param_set) mls.setSqrGaussParam (sqr_gauss_param);
mls.setPolynomialFit (use_polynomial_fit);
mls.setPolynomialOrder (polynomial_order);

// mls.setUpsamplingMethod (MovingLeastSquares<PointXYZ, PointNormal>::SAMPLE_LOCAL_PLANE);
Expand All @@ -128,8 +127,8 @@ compute (const pcl::PCLPointCloud2::ConstPtr &input, pcl::PCLPointCloud2 &output
mls.setSearchMethod (tree);
mls.setComputeNormals (true);

PCL_INFO ("Computing smoothed surface and normals with search_radius %f , sqr_gaussian_param %f, polynomial fitting %d, polynomial order %d\n",
mls.getSearchRadius(), mls.getSqrGaussParam(), mls.getPolynomialFit(), mls.getPolynomialOrder());
PCL_INFO ("Computing smoothed surface and normals with search_radius %f , sqr_gaussian_param %f, polynomial order %d\n",
mls.getSearchRadius(), mls.getSqrGaussParam(), mls.getPolynomialOrder());
TicToc tt;
tt.tic ();
mls.process (*xyz_cloud_smoothed);
Expand Down Expand Up @@ -178,14 +177,11 @@ main (int argc, char** argv)
double sqr_gauss_param = default_sqr_gauss_param;
bool sqr_gauss_param_set = true;
int polynomial_order = default_polynomial_order;
bool use_polynomial_fit = default_use_polynomial_fit;

parse_argument (argc, argv, "-radius", search_radius);
parse_argument (argc, argv, "-polynomial_order", polynomial_order);
if (parse_argument (argc, argv, "-sqr_gauss_param", sqr_gauss_param) == -1)
sqr_gauss_param_set = false;
if (parse_argument (argc, argv, "-polynomial_order", polynomial_order) != -1 )
use_polynomial_fit = true;
parse_argument (argc, argv, "-use_polynomial_fit", use_polynomial_fit);

// Load the first file
pcl::PCLPointCloud2::Ptr cloud (new pcl::PCLPointCloud2);
Expand All @@ -194,8 +190,7 @@ main (int argc, char** argv)

// Do the smoothing
pcl::PCLPointCloud2 output;
compute (cloud, output, search_radius, sqr_gauss_param_set, sqr_gauss_param,
use_polynomial_fit, polynomial_order);
compute (cloud, output, search_radius, sqr_gauss_param_set, sqr_gauss_param, polynomial_order);

// Save into the second file
saveCloud (argv[p_file_indices[1]], output);
Expand Down

0 comments on commit c60e97c

Please sign in to comment.