Skip to content

Commit

Permalink
Merge pull request #275 from PowerGridModel/feature/modernize-ci
Browse files Browse the repository at this point in the history
Feature/modernize ci
  • Loading branch information
mgovers authored Sep 30, 2024
2 parents 770f21a + 9f326d3 commit cb03804
Show file tree
Hide file tree
Showing 8 changed files with 212 additions and 62 deletions.
1 change: 0 additions & 1 deletion .github/workflows/check-code-quality.yml
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,6 @@ jobs:
- name: If needed raise error
run: |
if [[ `git status --porcelain --untracked-files=no` ]]; then
echo "Formatting not correct! See below the files which need to be reformatted!"
git status --porcelain --untracked-files=no
Expand Down
8 changes: 4 additions & 4 deletions .pre-commit-config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -4,19 +4,19 @@

repos:
- repo: https://github.com/fsfe/reuse-tool
rev: v3.0.1
rev: v4.0.3
hooks:
- id: reuse
- repo: https://github.com/pycqa/isort
rev: 5.12.0
rev: 5.13.2
hooks:
- id: isort
- repo: https://github.com/psf/black
rev: 22.10.0
rev: 24.8.0
hooks:
- id: black-jupyter
- repo: https://github.com/pre-commit/mirrors-mypy
rev: v1.2.0
rev: v1.11.2
hooks:
- id: mypy
additional_dependencies: [numpy, pandas]
Expand Down
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -95,4 +95,4 @@ If you are using Power Grid Model IO in your research work, please consider citi

## Contact

Please read [SUPPORT](https://github.com/PowerGridModel/.github/blob/main/SUPPORT.md) for how to connect and get into contact with the Power Gird Model IO project.
Please read [SUPPORT](https://github.com/PowerGridModel/.github/blob/main/SUPPORT.md) for how to connect and get into contact with the Power Grid Model IO project.
3 changes: 2 additions & 1 deletion set_pypi_version.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@

import os
from pathlib import Path
from typing import cast

import requests

Expand Down Expand Up @@ -43,7 +44,7 @@ def set_version(pkg_dir: Path):
def get_pypi_latest():
request = requests.get("https://pypi.org/pypi/power-grid-model-io/json")
data = request.json()
version: str = data["info"]["version"]
version = str(data["info"]["version"])
return (int(x) for x in version.split("."))


Expand Down
122 changes: 98 additions & 24 deletions src/power_grid_model_io/converters/pandapower_converter.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
"""
Panda Power Converter
"""

import logging
from functools import lru_cache
from typing import Dict, List, MutableMapping, Optional, Tuple, Type, Union
Expand Down Expand Up @@ -39,9 +40,21 @@ class PandaPowerConverter(BaseConverter[PandaPowerData]):
Panda Power Converter
"""

__slots__ = ("pp_input_data", "pgm_input_data", "idx", "idx_lookup", "next_idx", "system_frequency")
__slots__ = (
"pp_input_data",
"pgm_input_data",
"idx",
"idx_lookup",
"next_idx",
"system_frequency",
)

def __init__(self, system_frequency: float = 50.0, trafo_loading: str = "current", log_level: int = logging.INFO):
def __init__(
self,
system_frequency: float = 50.0,
trafo_loading: str = "current",
log_level: int = logging.INFO,
):
"""
Prepare some member variables
Expand All @@ -60,7 +73,12 @@ def __init__(self, system_frequency: float = 50.0, trafo_loading: str = "current
self.idx_lookup: Dict[Tuple[str, Optional[str]], pd.Series] = {}
self.next_idx = 0

def _parse_data(self, data: PandaPowerData, data_type: str, extra_info: Optional[ExtraInfo] = None) -> Dataset:
def _parse_data(
self,
data: PandaPowerData,
data_type: str,
extra_info: Optional[ExtraInfo] = None,
) -> Dataset:
"""
Set up for conversion from PandaPower to power-grid-model
Expand Down Expand Up @@ -172,7 +190,13 @@ def _fill_pgm_extra_info(self, extra_info: ExtraInfo):
for (pp_table, name), indices in self.idx_lookup.items():
for pgm_id, pp_idx in zip(indices.index, indices):
if name:
extra_info[pgm_id] = {"id_reference": {"table": pp_table, "name": name, "index": pp_idx}}
extra_info[pgm_id] = {
"id_reference": {
"table": pp_table,
"name": name,
"index": pp_idx,
}
}
else:
extra_info[pgm_id] = {"id_reference": {"table": pp_table, "index": pp_idx}}

Expand Down Expand Up @@ -850,8 +874,8 @@ def _create_pgm_input_three_winding_transformers(self):
# Default vector group for odd clocks_12 = Yndx, for odd clocks_13 = Ynxd and for even clocks = YNxyn or YNynx
no_vector_groups = (
np.isnan(winding_types["winding_1"])
| np.isnan(winding_types["winding_2"])
| np.isnan(winding_types["winding_3"])
& np.isnan(winding_types["winding_2"])
& np.isnan(winding_types["winding_3"])
)
no_vector_groups_ynd2 = no_vector_groups & (clocks_12 % 2)
no_vector_groups_ynd3 = no_vector_groups & (clocks_13 % 2)
Expand All @@ -860,7 +884,9 @@ def _create_pgm_input_three_winding_transformers(self):
winding_types.loc[no_vector_groups_ynd3, "winding_3"] = WindingType.delta

pgm_3wtransformers = initialize_array(
data_type="input", component_type="three_winding_transformer", shape=len(pp_trafo3w)
data_type="input",
component_type="three_winding_transformer",
shape=len(pp_trafo3w),
)
pgm_3wtransformers["id"] = self._generate_ids("trafo3w", pp_trafo3w.index)

Expand Down Expand Up @@ -995,7 +1021,8 @@ def _create_pgm_input_wards(self):
if "sym_load" in self.pgm_input_data:
symload_dtype = self.pgm_input_data["sym_load"].dtype
self.pgm_input_data["sym_load"] = np.concatenate( # pylint: disable=unexpected-keyword-arg
[self.pgm_input_data["sym_load"], pgm_sym_loads_from_ward], dtype=symload_dtype
[self.pgm_input_data["sym_load"], pgm_sym_loads_from_ward],
dtype=symload_dtype,
)
else:
self.pgm_input_data["sym_load"] = pgm_sym_loads_from_ward
Expand Down Expand Up @@ -1036,7 +1063,10 @@ def _create_pgm_input_motors(self):
p_spec = pgm_sym_loads_from_motor["p_specified"]
cos_phi = self._get_pp_attr("motor", "cos_phi", expected_type="f8")
valid = np.logical_and(np.not_equal(cos_phi, 0.0), np.isfinite(cos_phi))
q_spec = np.sqrt(np.power(np.divide(p_spec, cos_phi, where=valid), 2, where=valid) - p_spec**2, where=valid)
q_spec = np.sqrt(
np.power(np.divide(p_spec, cos_phi, where=valid), 2, where=valid) - p_spec**2,
where=valid,
)
q_spec[np.logical_not(valid)] = np.nan
pgm_sym_loads_from_motor["q_specified"] = q_spec

Expand All @@ -1045,7 +1075,8 @@ def _create_pgm_input_motors(self):
if "sym_load" in self.pgm_input_data:
symload_dtype = self.pgm_input_data["sym_load"].dtype
self.pgm_input_data["sym_load"] = np.concatenate( # pylint: disable=unexpected-keyword-arg
[self.pgm_input_data["sym_load"], pgm_sym_loads_from_motor], dtype=symload_dtype
[self.pgm_input_data["sym_load"], pgm_sym_loads_from_motor],
dtype=symload_dtype,
)
else:
self.pgm_input_data["sym_load"] = pgm_sym_loads_from_motor
Expand Down Expand Up @@ -1112,8 +1143,15 @@ def _pp_buses_output__accumulate_power(self, pp_output_buses: pd.DataFrame):
component_sides = {
"line": [("from_node", "p_from", "q_from"), ("to_node", "p_to", "q_to")],
"link": [("from_node", "p_from", "q_from"), ("to_node", "p_to", "q_to")],
"transformer": [("from_node", "p_from", "q_from"), ("to_node", "p_to", "q_to")],
"three_winding_transformer": [("node_1", "p_1", "q_1"), ("node_2", "p_2", "q_2"), ("node_3", "p_3", "q_3")],
"transformer": [
("from_node", "p_from", "q_from"),
("to_node", "p_to", "q_to"),
],
"three_winding_transformer": [
("node_1", "p_1", "q_1"),
("node_2", "p_2", "q_2"),
("node_3", "p_3", "q_3"),
],
}

# Set the initial powers to zero
Expand Down Expand Up @@ -1229,7 +1267,8 @@ def _pp_ext_grids_output(self):
pgm_output_sources = self.pgm_output_data["source"]

pp_output_ext_grids = pd.DataFrame(
columns=["p_mw", "q_mvar"], index=self._get_pp_ids("ext_grid", pgm_output_sources["id"])
columns=["p_mw", "q_mvar"],
index=self._get_pp_ids("ext_grid", pgm_output_sources["id"]),
)
pp_output_ext_grids["p_mw"] = pgm_output_sources["p"] * 1e-6
pp_output_ext_grids["q_mvar"] = pgm_output_sources["q"] * 1e-6
Expand All @@ -1256,7 +1295,8 @@ def _pp_shunts_output(self):
at_nodes = self.pgm_nodes_lookup.loc[pgm_input_shunts["node"]]

pp_output_shunts = pd.DataFrame(
columns=["p_mw", "q_mvar", "vm_pu"], index=self._get_pp_ids("shunt", pgm_output_shunts["id"])
columns=["p_mw", "q_mvar", "vm_pu"],
index=self._get_pp_ids("shunt", pgm_output_shunts["id"]),
)
pp_output_shunts["p_mw"] = pgm_output_shunts["p"] * 1e-6
pp_output_shunts["q_mvar"] = pgm_output_shunts["q"] * 1e-6
Expand All @@ -1280,7 +1320,8 @@ def _pp_sgens_output(self):
pgm_output_sym_gens = self.pgm_output_data["sym_gen"]

pp_output_sgens = pd.DataFrame(
columns=["p_mw", "q_mvar"], index=self._get_pp_ids("sgen", pgm_output_sym_gens["id"])
columns=["p_mw", "q_mvar"],
index=self._get_pp_ids("sgen", pgm_output_sym_gens["id"]),
)
pp_output_sgens["p_mw"] = pgm_output_sym_gens["p"] * 1e-6
pp_output_sgens["q_mvar"] = pgm_output_sym_gens["q"] * 1e-6
Expand Down Expand Up @@ -1707,12 +1748,22 @@ def _pp_buses_output_3ph__accumulate_power(self, pp_output_buses_3ph: pd.DataFra
Returns:
accumulated power for each bus
"""
power_columns = ["p_a_mw", "p_b_mw", "p_c_mw", "q_a_mvar", "q_b_mvar", "q_c_mvar"]
power_columns = [
"p_a_mw",
"p_b_mw",
"p_c_mw",
"q_a_mvar",
"q_b_mvar",
"q_c_mvar",
]
# Let's define all the components and sides where nodes can be connected
component_sides = {
"line": [("from_node", "p_from", "q_from"), ("to_node", "p_to", "q_to")],
"link": [("from_node", "p_from", "q_from"), ("to_node", "p_to", "q_to")],
"transformer": [("from_node", "p_from", "q_from"), ("to_node", "p_to", "q_to")],
"transformer": [
("from_node", "p_from", "q_from"),
("to_node", "p_to", "q_to"),
],
}

# Set the initial powers to zero
Expand Down Expand Up @@ -1902,7 +1953,8 @@ def _pp_sgens_output_3ph(self):
pgm_output_sym_gens = self.pgm_output_data["sym_gen"]

pp_output_sgens = pd.DataFrame(
columns=["p_mw", "q_mvar"], index=self._get_pp_ids("sgen", pgm_output_sym_gens["id"])
columns=["p_mw", "q_mvar"],
index=self._get_pp_ids("sgen", pgm_output_sym_gens["id"]),
)
pp_output_sgens["p_mw"] = np.sum(pgm_output_sym_gens["p"], axis=1) * 1e-6
pp_output_sgens["q_mvar"] = np.sum(pgm_output_sym_gens["q"], axis=1) * 1e-6
Expand Down Expand Up @@ -1938,15 +1990,24 @@ def _pp_trafos_output_3ph(self): # pylint: disable=too-many-statements
loading = np.maximum(np.sum(ui_from, axis=1), np.sum(ui_to, axis=1)) / pgm_input_transformers["sn"]
elif self.trafo_loading == "power":
loading_a_percent = (
np.maximum(pgm_output_transformers["s_from"][:, 0], pgm_output_transformers["s_to"][:, 0])
np.maximum(
pgm_output_transformers["s_from"][:, 0],
pgm_output_transformers["s_to"][:, 0],
)
/ pgm_output_transformers["s_n"]
)
loading_b_percent = (
np.maximum(pgm_output_transformers["s_from"][:, 1], pgm_output_transformers["s_to"][:, 1])
np.maximum(
pgm_output_transformers["s_from"][:, 1],
pgm_output_transformers["s_to"][:, 1],
)
/ pgm_output_transformers["s_n"]
)
loading_c_percent = (
np.maximum(pgm_output_transformers["s_from"][:, 2], pgm_output_transformers["s_to"][:, 2])
np.maximum(
pgm_output_transformers["s_from"][:, 2],
pgm_output_transformers["s_to"][:, 2],
)
/ pgm_output_transformers["s_n"]
)
loading = pgm_output_transformers["loading"]
Expand Down Expand Up @@ -2136,7 +2197,10 @@ def _generate_ids(self, pp_table: str, pp_idx: pd.Index, name: Optional[str] = N
return pgm_idx

def _get_pgm_ids(
self, pp_table: str, pp_idx: Optional[Union[pd.Series, np.ndarray]] = None, name: Optional[str] = None
self,
pp_table: str,
pp_idx: Optional[Union[pd.Series, np.ndarray]] = None,
name: Optional[str] = None,
) -> pd.Series:
"""
Get numerical power-grid-model IDs for a PandaPower component
Expand All @@ -2155,7 +2219,12 @@ def _get_pgm_ids(
return self.idx[key]
return self.idx[key][pp_idx]

def _get_pp_ids(self, pp_table: str, pgm_idx: Optional[pd.Series] = None, name: Optional[str] = None) -> pd.Series:
def _get_pp_ids(
self,
pp_table: str,
pgm_idx: Optional[pd.Series] = None,
name: Optional[str] = None,
) -> pd.Series:
"""
Get numerical PandaPower IDs for a PandaPower component
Expand Down Expand Up @@ -2348,7 +2417,12 @@ def get_trafo3w_switch_states(self, trafo3w: pd.DataFrame) -> pd.DataFrame:
pp_3_switches = self.get_individual_switch_states(trafo3w[["index", bus3]], pp_switches, bus3)

return pd.DataFrame(
data={"side_1": pp_1_switches, "side_2": pp_2_switches, "side_3": pp_3_switches}, index=trafo3w.index
data={
"side_1": pp_1_switches,
"side_2": pp_2_switches,
"side_3": pp_3_switches,
},
index=trafo3w.index,
)

def get_trafo_winding_types(self) -> pd.DataFrame:
Expand Down
Loading

0 comments on commit cb03804

Please sign in to comment.