In this project, we will predict to buy the cryptocurrency or not after 3 minutes by analysing past 60 min cryptocurrencies price and volume using Recurrent Neural Network (RNN).
The Dataset of Bitcoin, Bitcoin Cash, Ethereum and Litecoin Cryptocurrencies is avalable in crypto_data folder which will be used for training the RNN Network and the networks highest accuracy checkpoints wil be stored in the model director.
Layer (type) Output Shape Param #
=================================================================
cu_dnnlstm (CuDNNLSTM) (None, 60, 128) 70656
_________________________________________________________________
dropout (Dropout) (None, 60, 128) 0
_________________________________________________________________
batch_normalization (BatchNo (None, 60, 128) 512
_________________________________________________________________
cu_dnnlstm_1 (CuDNNLSTM) (None, 60, 128) 132096
_________________________________________________________________
dropout_1 (Dropout) (None, 60, 128) 0
_________________________________________________________________
batch_normalization_1 (Batch (None, 60, 128) 512
_________________________________________________________________
cu_dnnlstm_2 (CuDNNLSTM) (None, 128) 132096
_________________________________________________________________
dropout_2 (Dropout) (None, 128) 0
_________________________________________________________________
batch_normalization_2 (Batch (None, 128) 512
_________________________________________________________________
dense (Dense) (None, 32) 4128
_________________________________________________________________
dropout_3 (Dropout) (None, 32) 0
_________________________________________________________________
dense_1 (Dense) (None, 2) 66
=================================================================
Total params: 340,578
Trainable params: 339,810
Non-trainable params: 768
CuDNNLSTM is LSTM layer with CUDA gpu support which makes it much more faster then normal LSTM layer
Special thanks to Harrison Kinstey for pythonprogramming.net lectures.