Skip to content

PrimeIntellect-ai/cloud-lora

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

☁️ 🦜

Instantly deploy your local LoRA-tuned Llama in the cloud and scale to as much throughput as you want.

from typing import List
from cloud_lora.main import CloudLora, GenerationRequest
import peft
from peft import PeftModel

PROMPTS: List[str] = ...

peft_model = ... # create your Llama model, then apply your LoRA adapters

cloud_model = CloudLora.create(peft_model)

from concurrent import futures

with futures.ThreadPoolExecutor(128) as pool:
    generation_requests = map(lambda prompt: GenerationRequest(prompt=prompt), PROMPTS)
    for result in pool.map(cloud_model.remote().get_completion, generation_requests):
        print(result)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 94.5%
  • Dockerfile 5.5%