Skip to content

QQQQQby/YOLO

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

59 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Pytorch Implement of YOLO

Introduction

The full name of YOLO is You Only Look Once. It is a popular model with high speed and accuracy used for Object Detection. You can learn more in the official website.

Dataset

VOC2012

Requirements

  • Python>=3.5
  • Pytorch>=1.4
  • OpenCV
  • moviepy
  • scipy
  • PIL

Detect

You can run:

python detect.py
    --model_load_path=models/yolov3.pth
    --class_path=data/coco-ch.names
    --input_path=data/dog.jpg
    --output_path=data/dog_pred.jpg
    --device_ids=0

Now enjoy!

All usages and optional arguments:

 usage: detect.py [-h] [--model_load_path MODEL_LOAD_PATH]
                 [--class_path CLASS_PATH] [--color_path COLOR_PATH]
                 [--anchor_path ANCHOR_PATH] [--input_path INPUT_PATH]
                 [--output_path OUTPUT_PATH] [--not_show]
                 [--score_threshold SCORE_THRESHOLD]
                 [--iou_threshold IOU_THRESHOLD] [--device_ids DEVICE_IDS]
                 [--num_processes NUM_PROCESSES]

Object detection.

optional arguments:
  -h, --help            show this help message and exit
  --model_load_path MODEL_LOAD_PATH
                        Input path to models.
  --class_path CLASS_PATH
                        Path to a file to store names and colors of the
                        classes.
  --color_path COLOR_PATH
                        Path to a file which stores colors.
  --anchor_path ANCHOR_PATH
                        Input path to anchors.
  --input_path INPUT_PATH
                        Path to the file used for detection. If zero, camera
                        on your computer will be used.
  --output_path OUTPUT_PATH
                        Path to the output image or video. If Empty, the
                        predicted image will not be saved.
  --not_show            Whether not to show predictions.
  --score_threshold SCORE_THRESHOLD
                        Threshold of score(IOU * P(Object)).
  --iou_threshold IOU_THRESHOLD
                        Threshold of IOU used for calculation of NMS.
  --device_ids DEVICE_IDS
                        Device ids. Should be seperated by commas. -1 means
                        cpu.
  --num_processes NUM_PROCESSES
                        number of processes.

Run with flask

python run_flask.py

Transform .weights to .pth

We firstly use .weights and .cfg files to generate and save a Tensorflow model. The table below shows how to do this.

Model repo outputs
yolov1, yolov1-tiny https://github.com/thtrieu/darkflow a .pb file and a .meta file
yolov3 https://github.com/jinyu121/DW2TF 3 .ckpt files and a file named checkpoint

Then we use these files to generate a Pytorch model by running pb2pth.py.

Thanks

darkflow

DW2TF

Releases

No releases published

Packages

No packages published

Languages