Skip to content

Qengineering/YoloV5-face-ncnn-RPi4

Repository files navigation

YoloV5 face Raspberry Pi 4

output image target size 1920.

YoloV5 face recognition with the ncnn framework.

License

Paper: https://arxiv.org/pdf/2105.12931.pdf

Special made for a bare Raspberry Pi 4, see Q-engineering deep learning examples


Benchmark.

Model framework model size mAP Jetson Nano
2015 MHz
RPi 4 64-OS
1950 MHz
Ultra-Light-Fast ncnn slim-320 320x240 67.1 - FPS 26 FPS
Ultra-Light-Fast ncnn RFB-320 320x240 69.8 - FPS 23 FPS
Ultra-Light-Fast MNN slim-320 320x240 67.1 70 FPS 65 FPS
Ultra-Light-Fast MNN RFB-320 320x240 69.8 60 FPS 56 FPS
Ultra-Light-Fast OpenCV slim-320 320x240 67.1 48 FPS 40 FPS
Ultra-Light-Fast OpenCV RFB-320 320x240 69.8 43 FPS 35 FPS
Ultra-Light-Fast + Landmarks ncnn slim-320 320x240 67.1 50 FPS 24 FPS
LFFD ncnn 5 stage 320x240 88.6 16.4 FPS 4.85 FPS
LFFD ncnn 8 stage 320x240 88.6 11.7 FPS 3.45 FPS
LFFD MNN 5 stage 320x240 88.6 2.6 FPS 2.17 FPS
LFFD MNN 8 stage 320x240 88.6 1.8 FPS 1.49 FPS
CenterFace ncnn - 320x240 93 16.5 FPS 6.8 FPS
YoloV5 face ncnn - 320x320 93.6 - FPS 17.2 FPS
YoloV5 face ncnn - 480x480 93.6 - FPS 7.2 FPS
YoloV5 face ncnn - 640x640 93.6 - FPS 4.0 FPS
YoloV5 face ncnn - 1280x1280 93.6 - FPS 1.0 FPS
YoloV5 face ncnn - 1920x1920 93.6 - FPS 0.5 FPS

Dependencies.

To run the application, you have to:

  • A raspberry Pi 4 with a 32 or 64-bit operating system. It can be the Raspberry 64-bit OS, or Ubuntu 18.04 / 20.04. Install 64-bit OS
  • The Tencent ncnn framework installed. Install ncnn
  • OpenCV 64 bit installed. Install OpenCV 4.5
  • Code::Blocks installed. ($ sudo apt-get install codeblocks)

Installing the app.

To extract and run the network in Code::Blocks
$ mkdir MyDir
$ cd MyDir
$ wget https://github.com/Qengineering/YoloV5-face-ncnn-RPi4/archive/refs/heads/main.zip
$ unzip -j master.zip
Remove master.zip, LICENSE and README.md as they are no longer needed.
$ rm master.zip
$ rm LICENSE
$ rm README.md

Your MyDir folder must now look like this:
9.jpg
11.jpg
26.jpg
selfie.jpg
YoloV5-face.cpb
main.cpp
yolov5-blazeface.bin
yolov5-blazeface.param


Running the app.

To run the application load the project file YoloV5-face.cbp in Code::Blocks. More info or
The accuracity depends on the target size which can be set in main.cpp at line 30 face_detector.detect(m, objects, 640);. if you want to connect a camera to the app, follow the instructions at Hands-On.

output image target size 1280.

output image target size 640.

output image target size 640.


paypal