Skip to content

Qiming-Huang/ssformer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Stepwise Feature Fusion: Local Guides Global

This is the official implementation for Stepwise Feature Fusion: Local Guides Global

SSformer

PWC PWC PWC PWC

packages

  • Please see requirements.txt

Dataset

  • The dataset we used can be download from here

Checkpoints

  • The checkpoint for ssformer-S can be downloaded from here
  • The checkpoint for ssformer-L can be downloaded from here

Usage

Test

  1. modified configs/ssformer-S.yaml
    • dataset set to your data path
    • test.checkpoint_save_path : path to your downloaded checkpoint
  2. run python test.py configs/ssformer-S.yaml

Train

  1. modified configs/train.yaml
    • model.pretrained_path : mit pre-trained checkpoint path
    • other : path to save your training checkpoint and log file
  2. run python train.py configs/train.yaml

Citation

Wang, J., Huang, Q., Tang, F., Meng, J., Su, J., Song, S. (2022). 
Stepwise Feature Fusion: Local Guides Global. 
In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) 
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. 
MICCAI 2022. Lecture Notes in Computer Science, vol 13433. Springer, Cham. 
https://doi.org/10.1007/978-3-031-16437-8_11

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages