-
Notifications
You must be signed in to change notification settings - Fork 5
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
有关训练代码的问题 #8
Comments
https://www.jianshu.com/p/74c02e8d28f3 |
我纠正了这一项,重新进行了实验验证,跑出来的性能会略高于论文所报告的。 |
非常感谢您的回答,可以分享一下您修改的地方吗?非常感谢 |
label_hat[consensus_division>1] = 1
label_hat[consensus_division<=1] = 0
model.train()
for n_iter, batch in enumerate(train_loader): |
|
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
大佬你好,我是刚从事noisy对应性学习的研究生,您的工作非常优秀,但是我在跑您提供的开源代码时遇到一个问题,
代码
/processor.py里的 def get_loss(model, data_loader): 在计算loss进行高斯混合之前有一句 model.eval(),这里我猜是相当于进行了模型的推断,来判断样本是否为clean样本和noisy样本不应该传梯度,但是整体模型在get_loss判断完之后,好像并没有回到 model.train()模式,但是这样也能训练,这里使我产生了困惑,期待您的解答。
The text was updated successfully, but these errors were encountered: